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Abstract

A growing literature studies long-term income persistence across more than two gen-

erations. Despite a rich understanding of measurement-related biases for the parent-

child model, far less is known for the multigenerational model that captures transmis-

sion from parents and grandparents. We show that even using a 25-year income average

can result in a spurious grandparent coefficient. Importantly, for a given parental mea-

sure, averaging over more years for grandparents increases spillover bias. We propose

an IV approach that can more effectively mitigate bias with shorter timespans of in-

come. With Norwegian administrative data, we reveal a positive spillover bias in the

grandfather coefficients.

Keywords: Multigenerational mobility; income mobility; measurement error; spillover

bias

∗We are grateful to the coeditor, Katrine Løken, and two anonymous referees as well as Bhash Mazumder,
Gary Solon, seminar participants at Davidson College, Michigan State University, University of Colorado –
Denver, University of North Carolina – Greensboro, York University, and participants at the 2016 Southern
Economic Association meetings, the 2018 EALE meetings, and workshops at the Università Cattolica Milan
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1 Introduction

There has long been interest in the persistence of poverty (or privilege) across generations,

leading to a large descriptive literature examining intergenerational transmission of socioe-

conomic status.1 Until recently, the majority of these studies have focused on parent-child

transmission. With newly available data, an emerging literature adds another generation to

the parent-child model to learn more about the extent of long-term status persistence. Typ-

ically, a positive grandparent coefficient is estimated, suggesting that long-run mobility is

lower than previously believed. Solon (2018) notes, however, that such a positive grandparent

coefficient could arise from measurement error in parental income, a well-known economet-

ric result. Some studies have attempted to address this using measurement strategies from

the parent-child literature (e.g., averaging an outcome over more years). Despite a rich

understanding of measurement-related biases in the intergenerational (parent-child) income

mobility literature, far less is known about the implications for the multigenerational model

that captures transmission from parents and grandparents. It turns out that even using

income measures considered ideal for parent-child regressions may still lead to misleading

interpretations of grandparent coefficients in multigenerational regressions, as we show in

this paper.

Our contribution is to formally show with theory, simulations, and administrative data

the role that measurement error in parent and grandparent income may play in the grandpar-

ent coefficient estimates. We highlight how small positive grandparent coefficient estimates

could be inflated, and may be a consequence of measurement error. Our simulations show

that even using long-term averages of income during midlife will not eliminate the possibility

of estimating a spurious grandparent coefficient. Perhaps more importantly, we also show a

counter-intuitive result that, for a given parental income measure (e.g., a 20-year average),

improving the grandparent income measure actually inflates the spillover bias in the grand-

parent coefficient. This would otherwise be incorrectly interpreted as reducing attenuation

1See Solon (1999) and Black & Devereux (2011) for reviews of the literature on two-generation mobility.
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bias. Finally, settings with lower intergenerational mobility (i.e., larger intergenerational

persistence parameters) are more susceptible to this bias, which could have additional im-

plications for cross-country comparisons. Additionally, we propose an IV approach that has

the advantage of requiring a shorter timespan of incomes to minimize bias, and serves as a

useful supplemental approach for gauging bias.

With administrative tax data from Norway, we provide an empirical illustration of the

spillover bias in the OLS and IV estimates, showing how it inflates the grandparent coefficient

in the multigenerational regression. The OLS estimate of the grandfather coefficient falls

by 50% when we change the income measure for both generations from annual income to a

25-year average. When we use a 10-year average for grandfathers to isolate the spillover bias,

changing only the measure for fathers still causes the grandfather coefficient to fall by 30%.

The analogous results from our IV approach are similar, with the grandfather coefficients

falling by 40% and 30% for the respective exercises. We also find similar results using rank

correlations instead of intergenerational elasticities. Considering that we have very good

administrative data, which is not susceptible to some important sources of error present

in survey data, our empirical results can be considered an understatement of the potential

biases.

These biases will become increasingly important as the availability of multigenerational

data grows. Observing data on three generations is not trivial and has only recently become

possible in some administrative datasets. The burgeoning of digitized historical records and

advances in automated linking methods will surely lead to more multigenerational studies.2

The rest of the paper proceeds as follows. In the next section, we provide background

on the existing multigenerational mobility literature.3 In Section 3, we formalize the biases

from measurement issues. We use these theoretical results to run a simulation in Section

4, which illustrates the nature of these biases in coefficient estimates from the multigenera-

2For example, Abramitzky et al. (2019), Bailey et al. (2017), and Price et al. (2019) are recent studies
on advances in linking individuals across generations in historical data.

3Note that for both convenience and clarity we use “intergenerational” to refer to parent-child models
and “multigenerational” to refer to models where grandparents are also included.
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tional regression. Section 5 describes our administrative data and approach, followed by the

empirical results. We provide conclusions in Section 6.

2 Background on multigenerational mobility

To see how accounting for the status of another generation may affect our estimates of

persistence across generations, we begin with the basic parent-child model,

yi0 = β1xi1 + εi. (1)

yi0 is an outcome for a child in family i and xi1 is the same outcome for the parent.4 The OLS

estimate of β1 is a summary statistic describing associations across generations. If this is the

true transmission process, one could approximate the child-grandparent association with β2
1

under some simplifying assumptions. This implies that persistence declines geometrically, so

we would observe fairly rapid mobility across generations.

With the multigenerational regression equation,

yi0 = γ1xi1 + γ2xi2 + εi, (2)

γ2 describes the persistence from grandparents to their grandchildren, conditional on parents,

and γ1 still describes transmission from parents (though now conditional on grandparents).

A finding of γ2=0 would confirm the model in (1) and the implied geometric decline in

persistence across generations. Early studies tended to support this, as they did not find

strong evidence of a conditional grandparent effect, but the datasets were often for a peculiar

or non-representative sample (e.g., Hodge, 1966; Warren & Hauser, 1997).

Recent multigenerational mobility studies tend to estimate a positive grandparental co-

efficient, implying that parent-child estimates overstate mobility as γ2 > 0 indicates a slower

4Intercepts are omitted to simplify presentation; the variables should be considered to be in deviation-
from-mean form.
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than geometric decline in persistence. While there is general agreement that a positive γ2

can have important implications for our picture of long-term mobility relative to relying on

the model in (1), there are two distinct theories on the interpretation. One interprets the

positive coefficient as reflecting a “causal” grandparent effect while the other theory is that

the grandparent outcome serves as an additional proxy for underlying parental latent status.

The latent status interpretation argues that the observed parental outcome measure (e.g.,

income) only partially captures the parent’s unobserved socioeconomic status (e.g., Clark

& Cummins, 2015), and the coefficient on the grandparent outcome actually reflects ad-

ditional persistence in status from parents to children.5 Braun & Stuhler (2018) estimate

a multigenerational regression using education outcomes and occupational prestige, finding

that adding other parental status measures substantially reduces the grandparent coefficient.

The grandparent coefficient also remains largely unchanged in most subsamples with prema-

turely deceased grandparents. Both of these exercises support the notion that grandparents

do not have a direct effect on grandchildren’s education.6

Similarly, early theoretical work by Becker & Tomes (1979) arrived at the perhaps counter

intuitive prediction of a negative γ2, which implies persistence declines at a faster than

geometric rate, or more rapid mobility. The intuition behind a negative coefficient is that

if the increased income of grandparents did not raise the parents’ income, this implies the

parent got a poor draw on human capital endowment, and some of this is passed on to the

5There are a number of ways in which studies have attempted to test the theories surrounding parental
latent status. Vosters & Nybom (2017) and Vosters (2018) estimate transmission of parent’s latent status by
aggregating information from other parental status measures to obtain a greatest lower bound on persistence
and find marginally larger persistence estimates. Adermon et al. (2021) use a similar methodological approach
but add relatives in the parent generation (e.g., aunts, uncles and their spouses), finding increased persistence
but also showing that grandparents matter very little conditional on the inclusion of these relatives.

6Braun & Stuhler (2018) also identify an intergenerational inheritability parameter in their latent vari-
able framework using a ratio of parent-child and grandparent-parent regression parameters to test other
hypotheses of Clark (2014) and Clark & Cummins (2015). They explain that their estimates of this ratio
are robust to measurement error biases as long as the error variances are constant across the appropriate
generations (parent, child for one approach, and parent, grandparent in the other). This is related to our
discussion in Section 3.4 on using two-generation estimates to assess mobility, though we focus on the more
common practices of comparing estimates and products of estimates from child-parent, child-grandparent,
and parent-grandparent regressions.
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child.7 Such negative coefficients are, however, rarely seen in empirical studies.8

On the other hand, there is also substantial interest in whether there is some “causal”

process being captured, where grandparents matter for children’s outcomes above and be-

yond transmission that occurs through the parents (Mare, 2011). In general, this literature is

descriptive in nature, but studies have used variation in child-grandparent geographic prox-

imity (Modalsli, 2021), timing of grandparent deaths (Braun & Stuhler, 2018; Lindahl et al.,

2014; Modalsli, 2021), and co-resident living arrangements (Zeng & Xie, 2014) to look for

evidence of causal interpersonal mechanisms. Zeng & Xie (2014) show convincing evidence

of a direct effect of co-resident grandparents on children’s education in rural China. Other

evidence is more mixed, consistent with a potential role for indirect influence of grandparents

or with the latent status theory of mobility.

In one of the few studies able to estimate multigenerational income mobility regres-

sions, Lindahl et al. (2015) use IV and OLS approaches to assess long-term mobility. They

instrument for parent income using grandparent income, which identifies the parent-child

persistence parameter under the latent status model. The large and statistically significant

coefficient estimate lends support to the latent status model if the identifying assumption

holds, but the authors point out that this may also reflect model misspecification of the

parent-child regression. Subsequently finding a positive grandparent coefficient in the OLS

estimation of the multigenerational model supports possible model misspecification and sug-

gests that grandparents do affect children’s outcomes conditional on parents.

Whether estimating a multigenerational regression out of interest in the direct effects or

proxy interpretation, the resulting estimate of γ2 is of primary interest and what we show

7Solon (2014) and Stuhler (2014) also adapt this theoretical framework, providing further discussion of
how and why we might find a conditional grandparental effect, whether negative or positive.

8Lucas & Kerr (2013) use a small subset of national data on income for three generations in Finland,
and find mixed results for grandparents with negative coefficient estimates though most are not statistically
significant. With a unique dataset containing education outcomes for four generations of a sample of families
in Malmö, Sweden, (Lindahl et al., 2014) test the Becker-Tomes theory of a negative grandparent coefficient
estimate by instrumenting for parental education with that of great-grandparents in a multigenerational
regression and although the IV estimate for grandparents is positive in value, they cannot reject a negative
alternative.
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in this paper applies. If the true γ2 is negative, for example, estimating a biased positive

coefficient may actually lead us to incorrectly conclude that a model is wrong. A true positive

γ2, on the other hand, means mobility is slower than implied by the parent-child model in

(1).9 For a numerical example, consider Norway, where the true β1 may be around 0.4.10 In a

regression where log income is the outcome (so β1 is an intergenerational income elasticity), a

child whose parents have income 50% above the mean in their generation would be expected

to have income around 20% above the mean in the child’s generation. Conversely, if the

grandparents had income, say, 75% above the mean in their generation, and γ2 is about 0.1

(assuming γ1 is 0.4), would imply the child’s income would be about 27.5% above the mean.

The analysis in this paper builds on the intergenerational elasticity framework that is

typically used in the literature (Jantti & Jenkins, 2014). Some recent studies of intergenera-

tional transmission in economics (e.g., Chetty et al., 2014) have instead described persistence

and mobility through the use of rank correlations. In such a framework, an individual’s in-

come rank (or the rank of some other characteristic) is modeled as a linear function of the

parent’s (or parents’) rank in the parental distribution. Such an approach has been extended

to multigenerational studies as well, adding the rank of grandparents to the setup (Ader-

mon et al., 2018). Translating between rank coefficients and intergenerational elasticities

is not straightforward. Income inequality typically varies over time, and for this reason,

the magnitude of movements in income level across generations and the magnitude of rank

changes need not correspond across countries or time periods. Corak et al. (2014, p. 196)

describe how the two measures differ, and how the rank correlation can be poorly suited to

examine questions of equality of opportunity and comparisons of well-being across countries.

9Several other recent studies also find evidence of a positive grandparent effect. Hertel & Groh-Samberg
(2014) use the Panel Study of Income Dynamics (PSID) to study persistence in occupational class in the
U.S.; Modalsli (2021) uses administrative data on occupations and incomes for Norway; Long & Ferrie (2018)
use wealth-based occupational status measures constructed from U.S. Census data; Boserup et al. (2014)
estimate multigenerational persistence in wealth using Danish administrative records; Pfeffer (2014) uses
the PSID to study educational mobility in the U.S.; Ferrie et al. (2016) further explore educational mobility
in the U.S. using Census data and consider the possibility that their estimate could be a consequence of
measurement error.

10Nilsen et al. (2012) find an estimate of 0.34 based on measuring income with a 15-year average, implying
a potential attenuation factor of about 0.85 from Mazumder (2005); this implies β1 = 0.42.
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As we expect rank-rank regressions to become more prevalent also in the multigenerational

literature, we have replicated parts of our analysis with rank correlations in addition to in-

tergenerational elasticities. We find empirically, as well as in a simulation on synthetic data,

that rank-rank coefficient estimates follow similar patterns to the IGEs. This suggests that

the challenges of measurement error documented in this paper also apply when rank-rank

regressions are used.

3 Biases from income measurement issues

Measurement issues have long played an important role in the descriptive mobility litera-

ture, and have received particular attention in the context of income mobility (e.g., Solon,

1992; Zimmerman, 1992; Mazumder, 2005; Haider & Solon, 2006; Nybom & Stuhler, 2014).

The measurement issues stem from the fact that, although we would like to estimate the

intergenerational persistence in a long-term (or lifetime) component of income, we do not

observe this. Instead, we rely on observed annual incomes, either from self-reported survey

data or administrative records. The sources of bias that can arise from using such measures

include transitory fluctuations in annual income (which we will consider to implicitly include

any measurement error in annual reports) and lifecycle variation in both the relationship be-

tween permanent and annual incomes as well as in the share of annual income variation due

to the transitory components.11 With these issues, the timing and duration of the lifespan

for which we observe annual incomes are crucial to mitigating potential biases.

These measurement issues have distinct implications in the multigenerational regression,

even after taking standard approaches to mitigate them. The intergenerational correlation

between parents’ and grandparents’ permanent components of income leads to spillover of

11For studies relying on retrospective questions in surveys (about own income in previous periods or the
economic status of parents or grandparents) the possibility of recall error introduces yet another bias. This
will not be directly addressed here, as an increasing number of studies (including the present one) rely on
administrative data that is collected during or shortly after the year the income is accrued. And although
we focus primarily on income to be precise about the nature of measurement issues, our main results on the
spillover bias generalize to other measures of socioeconomic status to some degree as well.
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these biases, a standard econometric result. In many contexts, such spillover is ignored

because the affected coefficient is not of interest, but the opposite is true in this case—

we are primarily interested in the grandparent coefficient. This spillover bias can produce

a positive coefficient estimate when the true parameter for grandparents is zero—or even

negative—in the multigenerational equation in (2).

For basic intuition, first consider the simple setting where only parental income is mea-

sured with error and the measurement error is classical, but we perfectly observe grandpar-

ents’ income (xi2). Then the coefficient estimate on parents’ income is attenuated, but the

coefficient estimate on grandparents’ income is actually biased upward because the underly-

ing permanent component of parents’ earnings is positively related to that of the grandpar-

ents. This intuition highlights the main point of the paper, but is obviously too simplistic a

scenario as grandparents’ income is also measured with error.

In this section, we show the equations for the OLS and IV estimates from the multigener-

ational regression, illustrating the sources of attenuation and spillover bias. We first consider

the simple case of classical measurement error in section 3.1, then allow for persistence in the

transitory component of income in section 3.2, and briefly discuss lifecycle effects in section

3.3. We point out the similarities to the intergenerational case and also highlight key aspects

specific to the multigenerational setting.

3.1 Classical measurement error

In the simple case of classical measurement error—or classical errors-in-variables (CEV)—

there are no lifecycle effects and log annual income in year t for generation g, xigt, is the sum

of a permanent component xig and a white noise error or transitory component vigt:

xigt = xig + vigt. (3)

Letting g = 1 for parents and g = 2 for grandparents, the CEV case also assumes that
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vi1t is orthogonal to vi2t, so annual income is only related across generations through the per-

manent component of income. This relation is reflected below by ρ ≡ corr(xi1, xi2), which is

the intergenerational correlation in the permanent component of income between the parent

and grandparent generations. ρ thus reflects parent-grandparent persistence and is directly

related to the parameter on grandparent income (call it β2) in the respective bivariate model

regressing grandparent income on parent income (specifically, β2 = ρσx1
σx2

). For simplicity, we

assume stationarity here such that var(xi1t) = var(xi2t) = σ2
x and var(vi1t) = var(vi2t) = σ2

v ,

though this is relaxed in Appendix A. The probability limits of the OLS estimators from

using annual income measures in the multigenerational equation (2) are:

plim(γ̂1,OLS) = γ1
σ2
x

σ2
x + σ2

v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

attenuation, θ1

+γ2
σ2
x

(
ρσ2
v

σ2
x(1−ρ2)+σ2

v

)
σ2
x + σ2

v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

spillover, ω1

(4a)

plim(γ̂2,OLS) = γ1
σ2
x

(
ρσ2
v

σ2
x(1−ρ2)+σ2

v

)
σ2
x + σ2

v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
︸ ︷︷ ︸

spillover, ω2

+γ2
σ2
x

σ2
x + σ2

v

(
σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

) .
︸ ︷︷ ︸

attenuation, θ2

(4b)

The probability limit for each generation’s coefficient is decomposed into a linear com-

bination of the respective true parameter times an attenuation factor (θ), plus the other

generation’s true parameter times a spillover factor (ω). For example, the form for grand-

parents is plim(γ̂2,OLS) = γ1ω2+γ2θ2. In a perfect world with no measurement error (σ2
v = 0),

both attenuation factors (θ) would be equal to one, and both spillover factors (ω) would be

equal to zero, and there would be no bias.

With measurement error and a positive parent-grandparent income correlation, equa-

tion (4b) shows that even if grandparents do not have an effect on grandchildren’s income

conditional on parents—so γ2 = 0 in equation (2)—the second element of plim(γ̂2,OLS) will
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be zero but the first element (γ1ω2) will still be positive. In other words, despite the true

γ2 = 0, one would still estimate a positive coefficient. Further, the size of the spillover bias

in plim(γ̂2,OLS) is largely driven by the size of γ1 and is also increasing in ρ, so we expect it

to be more substantial in countries with higher levels of intergenerational persistence.

Conversely, if the grandfather parameter γ2 is not zero, it is likely small relative to the

parent parameter γ1, so we do not expect spillover to be a major contributor to bias in the

parental coefficient estimate γ̂1,OLS. Rather, attenuation bias is the primary concern in the

parental coefficient, and since
(

σ2
x+σ

2
v

σ2
x(1−ρ2)+σ2

v

)
> 1, the attenuation bias will be at least slightly

worse than in a parent-child regression. Of course, researchers typically take averages over

annual income measures to mitigate biases. This leads to replacing the σ2
v in equations (4a)

and (4b) with σ2
v/T , similar to what has been shown for parent-child regressions. This is also

noted in Table 1, which we provide to summarize how equations (4a) and (4b) change under

the different measurement scenarios and empirical approaches we consider in this section.

Table 1: Elements that take place of σ2
v in plim(γ̂1) and plim(γ̂2)

Empirical approach vit ∼ CEV vit ∼AR(1)

OLS using annual income measures σ2
v

σ2
e1

1−δ2

OLS using T -year averages of income σ2
v

T
1
T

σ2
e1

1−δ2

[
1 + 2δ

(
T− 1−δT

1−δ
T (1−δ)

)]
IV using annual incomes T years apart 0 δT

σ2
e1

1−δ2

Notes: This table provides the elements that replace σ2v in equations (4a) and (4b) under
the empirical approaches and measurement error models we consider.

Note that in our simplified case with stationarity, the attenuation factors and spillover

factors are symmetric for parents and grandparents, so ω1 = ω2 and θ1 = θ2. In theory, these

could differ across generations without stationarity, and when we incorporate key features of

more realistic earnings processes, as we show in Appendix A. One key result when we allow

σ2
xg and σ2

vg to vary across generations is that averaging over more years for grandparents

worsens the spillover bias in plim(γ̂2). Algebraically, time-averaging for the grandparent

implies replacing only the σ2
v outside of parenthesis in ω2 with σ2

v2
/T2, which effectively
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shrinks the denominator thereby increasing ω2. We revisit this result in Section 4.

What does time-averaging solve in the multigenerational regression then? Similar to the

intergenerational case, it reduces the attenuation factor, but we know that some bias still

remains. There is still a positive spillover factor that can cause upward bias in the other

coefficient estimate—leaving open the possibility of estimating a spurious grandparent effect,

even when taking long-term averages for parents and grandparents.

Under the strong assumptions of classical measurement error, instrumental variables

estimation (IV) (with a valid instrument) using annual income in one year to instrument

for another would yield consistent estimates. Early intergenerational studies use fathers’

education to instrument for fathers’ income (e.g., Solon, 1992) as well as annual income to

instrument for multi-year averages (Altonji & Dunn, 1991), though both studies acknowledge

the tenuousness of instrument exogeneity. In the latter approach, a valid instrument can only

affect offspring income through the permanent component of the parental income average

(so the transitory components cannot be correlated over time). Altonji & Dunn (1991) note

that this may not hold because the IV estimates are consistent with some persistence in the

transitory component of income.

More recently, studies using multigenerational data have applied IV approaches to multi-

generational regressions to test both latent status and Becker-Tomes theories of causal path-

ways for intergenerational transmission. These approaches have used the outcome for grand-

parents to instrument for that for parents (Boserup et al., 2014; Lindahl et al., 2015) or sim-

ilarly have used great-grandparents to instrument for grandparents (Lindahl et al., 2014).12

12The instrument validity in these cases relies on the assumption that the grandparents’ (great-
grandparents’) outcome does not affect the child’s outcome except via the parents’ (grandparents’) outcome.
Considering the theoretical mechanisms through which grandparents could exert a direct effect (after con-
ditioning on parents), and the findings in recent research supporting such mechanisms (e.g., Zeng & Xie,
2014), it is unclear whether this assumption holds for the case of using a grandparent outcome to instrument
for parents.
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3.2 AR(1) persistence in the measurement error

The classical errors-in-variables scenario is useful for exposition and for identifying methods

to reduce or eliminate bias. This is not realistic for the actual earnings process though,

especially to the extent that IV using consecutive annual incomes would provide consistent

estimates. One extension to the classical case is recognizing persistence in the transitory

component vit, assuming an AR(1) process with persistence parameter δ:

vi1t = δvi1t−1 + ei1t. (5)

Now σ2
v is replaced with σ2

e

1−δ2 in the probability limits for the OLS estimators in (4a) and

(4b). Or when we use T-year averages of annual income, each σ2
v is replaced with 1

T

(
σ2
e

1−δ2

)
φ,

where φ is given by:13

φ = 1 + 2δ
T − 1−δT

1−δ

T (1 − δ)
. (6)

Persistence in vit implies that time-averaging is less effective at mitigating attenuation bias.

Put differently, it takes more years of income for averaging to achieve the same level of bias

mitigation. The stronger the persistence (or the larger δ), the worse the bias is.

We propose an IV approach, on the other hand, that has the advantage of using fewer

years of income to achieve a similar degree of bias reduction. The required number of years

of income data—more precisely, the required time difference between two annual income

measures—depends on the extent of persistence over time (δ). Again, larger δ implies more

years are needed. Studies have shown that the transitory components are correlated over

time, but generally disappear after about 3 years.14 This means that annual earnings mea-

sures 4 or 5 (or more) years apart can be used to instrument for each other, as it seems

reasonable to assume that the measurement errors in these years are uncorrelated with each

13Solon (1992) noted this more complicated scenario for the intergenerational case in footnote 17 of his
paper and Mazumder (2005) subsequently examined the empirical implications.

14Moffitt & Gottschalk (1995) use the PSID data from 1969-87 and find that the transitory component
is composed of serially correlated shocks that die out within 3 years. Using later years of the PSID, Haider
(2001) notes that less than 15% of transitory shock remains after 3 years.
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other and are also uncorrelated with child’s earnings. Hence, our IV approach uses parental

annual earnings from one year to instrument for parents’ earnings in a different year, and

does the same for grandparents’ earnings. This approach is similar to that used by Altonji &

Dunn (1991), though by not using time-averages we require fewer years of observed incomes.

The probability limits of the IV estimators for γ1 and γ2 are identical to equations (4a)

and (4b) except that each σ2
v is replaced with δT

(
σ2
e

1−δ2

)
and T = s−t now denotes the number

of years between the annual earnings measure used as an instrument (year s) and treated

as endogenous (year t). Increasing T (years between the instrument and endogenous income

measures) reduces attenuation bias, and does so at a faster rate than taking T-year time

averages of income. Thus, our IV approach provides further evidence on potential spillover

bias that remains in OLS estimates, and does so with a shorter time span of income, which

is particularly helpful with the limited time spans available for multigenerational datasets.

Of course, there are often tradeoffs with relying on few incomes. For example, if there are

many zero or missing incomes, one may want to adopt a more flexible approach with regard

to the distance between incomes, the particular ages at which incomes are observed, or

using time-averages instead of annual incomes. While these changes may increase the data

requirements, such modifications are easily adopted. We discuss in the next section and

in Appendix B the potential issues that arise when shifting the endogenous or instrument

income measures to different points in the lifecycle.

3.3 Lifecycle Effects

We briefly discuss lifecycle related biases, but relegate most details to Appendix B, as the

biases are algebraically more complicated and not immediately necessary for the main points

of the paper. One source of age-related bias is the U-shaped pattern in the size of σ2
v ,

meaning it gets very large at young and old ages, and is minimized around the early 40’s.

If the increase in σ2
v is steep enough, then taking long-term averages that expand into too

young or old of ages may lead σ2
v/T to grow as one averages over more years, worsening
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attenuation bias. In the multigenerational case, such a scenario would also lead to larger

spillover bias for larger T .

The other source of lifecycle-related bias is the age-related variation in the association

between annual and permanent income. To model this lifecycle variation, equation (3)

becomes xigt = λgtxig + vigt, where λgt < 1 at too young of ages and λgt > 1 at too old of

ages (e.g., Haider & Solon, 2006). For offspring (g = 0), the implications are straightforward,

as λ0t is simply a multiplicative bias factor, meaning both coefficient estimates are biased

in the same direction by the same proportion to the extent that λ0t is different from one.

However, lifecycle bias arising from measurement of parent and grandparent income is more

complicated, with attenuation or amplification bias possible depending on whether λgt is less

than or greater than one. When using T -year averages of income, then it is the magnitude

of the corresponding average λ̄gT that is relevant. Taking long-term averages during midlife

helps to ensure that λ̄gT ≈ 1. The implications of lifecycle bias for parents and grandparents

are similar to what has been found for the intergenerational case; measuring income at too

old of ages leads to downward bias or at too young of ages leads to amplification bias. These

results hold for both OLS and IV, though the one distinction with IV is that it is the age at

which the endogenous income is measured that matters more for bias.

3.4 Comparing estimates from two-generation regressions

While we focus on results from multigenerational regressions, it continues to be common

for studies of long-term mobility to also use estimates from bivariate regressions involving

two generations. The implications of measurement error for such comparisons rely on the

well-established results on bias in the parent-child regression. Still, it is important to keep

in mind that the “ideal” income measures for particular generations may differ when using

a multigenerational regression versus a set of two-generation estimates to approximate long-

term mobility or make inferences about effects of grandparents.

Two such comparisons that are interpreted as evidence of further memory than the
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parent-child model are findings that β̂3 > (β̂1)
2 or that β̂3 > β̂1β̂2, where β̂2 is the OLS

estimate from a grandparent-parent regression and β̂3 that from a grandparent-child regres-

sion. Denoting the corresponding attenuation factors θ∗j to emphasize that these are for

the bivariate regressions, we can see that comparing the OLS estimates may not be strong

enough evidence, even after properly accounting for estimation error.

Consider first (β̂1)
2 versus β̂3. Even if β3 = (β1)

2, we would find that β̂3 > (β̂1)
2 when the

attenuation factors satisfy θ∗3 > (θ∗1)
2. How likely is this to occur? Based on the preferred

estimates of attenuation factors in Table 1 of Mazumder (2005), using a 10-year average for

parents’ income (θ∗1 = 0.79 so (θ∗1)
2 = 0.62) and a 4-year (or longer) average (θ∗3 = 0.66) for

grandparents’ income can give θ∗3 > (θ∗1)
2, and thus β̂3 > (β̂1)

2. Datasets that actually have

income data for three generations are likely to have limitations in line with this example,

where more years of income are available for fathers than grandfathers.

For the second comparison, we could find β̂3 > β̂1β̂2, despite the true relationship being

β3 = β1β2, if the attenuation factors satisfy θ∗3 > θ∗1θ
∗
2. Since the same grandparent income

measure is typically used in the offspring-grandparent and parent-grandparent regressions,

θ∗3 = θ∗2, meaning any θ∗1 < 1 can lead us to mistakenly conclude that β3 > β1β2. Even using

a 30-year average leaves an attenuation factor of 0.91 according to Mazumder (2005), so rich

administrative datasets with full lifetimes of incomes for parents could still be susceptible to

this misinterpretation.

We note this because it is related to constructing income measures in a way to avoid error-

related biases from driving conclusions about mobility. In particular, such comparisons are

often used in conjunction with multigenerational regressions to study long-term mobility.15

15Another approach to measuring intergenerational (multigenerational) mobility that has often been used
by sociologists is to compute sibling (cousin) correlations in outcomes. Solon (1999) and Björklund & Jäntti
(2020) provide more detailed discussions of sibling correlations and Hällsten (2014) is a recent example using
cousin correlations to study multigenerational mobility. Although these methods have less onerous data
requirements, they are also susceptible to the sources of bias we consider. While the two approaches do not
necessarily reflect identical concepts of mobility, the comparison of cousin correlations to the squared sibling
correlations is loosely analogous to comparing the child-parent estimate with a child-grandparent estimate;
the respective attenuation factors could similarly distort conclusions from such comparisons. Alternatively,
comparing cousin correlations with the parental outcome “removed” is attempting to isolate a conditional
grandparent effect akin to that obtained in multigenerational regressions. Naturally, the resulting estimate
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4 Simulation

As we showed in Section 3, the grandparent probability limit can be written plim(γ̂2,OLS) =

γ1ω2+γ2θ1. This illustrates three key points. First, even if there is no conditional grandparent

effect, one can still estimate a positive grandparent coefficient due the additive spillover bias

(γ1ω2). Second, the magnitude of the spillover bias increases with the size of the parent

parameter (γ1). Third, we saw that the spillover factor (ω2) is increasing in ρ, the parent-

grandparent correlation. Taken together these last two points indicate that societies with

higher levels of intergenerational persistence are more susceptible to the spillover bias. Even

with gold standard approaches of taking long-term averages of income for all generations,

some bias remains, and the grandparent coefficient could still be biased upward whether the

true parameter is positive, zero, or even negative. In this section, we explore the potential

magnitudes of these biases.

4.1 Illustrating sizes of the attenuation and spillover bias factors

To quantify the implications of these biases in multigenerational regressions, we conduct

simple simulations based on equations (4a) and (4b). We first focus on the attenuation and

spillover bias factors, θ and ω, respectively, and examine how these vary with the parameters

ρ and δ for OLS and IV. Recall, ρ is the parent-grandparent correlation in the permanent

component of income and hence reflects different levels of intergenerational persistence in

different societies. The parameter δ is the autocorrelation coefficient in the transitory com-

ponent of earnings (so a value of zero corresponds to classical errors in variables), and is an

important factor determining the effectiveness of using time-averaging or IV estimation to

reduce attenuation bias. In Appendix B, we also present some results where we vary λgt,

which reflects lifecycle variation in the association between lifetime and annual income in

is vulnerable to an upward bias similar to what we call the spillover bias, as the noisiness of the observed
parental outcome can lead to overestimation of the grandparent effect. To alleviate such biases, one would
need to observe many years of income, which then undoes the lessened data requirements that often makes
these approaches desirable.
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year t for generation g.

The bias factors alone allow one to gauge the extent of these biases in a variety of plausible

data generating scenarios. These values also enable one to assess the likelihood of estimating

a spurious grandparent coefficient in different scenarios, by also choosing potential values

for the multigenerational parameters γ1 and γ2. We provide one such example, choosing

plausible values for Norway to illustrate the pattern of estimates that may be observed in

the event of a spurious grandparent effect.

We first use the results for equation (4b) to compute the bias factors for the grandparent

coefficient, though with stationarity the bias factors are symmetric for the parent coefficient.

We consider several different scenarios, varying δ (0, 0.5, 0.7) and ρ (0.2, 0.4, 0.6), with all

λgt = 1. Multiplying the numerator and denominator of the probability limit by the total

variance of annual earnings, σ2
xt, allows us to simply make assumptions about the variance

shares σ2
v

σ2
xt

and σ2
x

σ2
xt

to calculate the attenuation and spillover factors (θ and ω).16 We set the

variance shares at σ2
v

σ2
xt

= σ2
x

σ2
xt

= 0.5 for our base case, but also set σ2
v

σ2
xt

= 0.7 for a robustness

check. For a given set of these parameters, we vary the number of years over which income

is averaged for parents (T1) and grandparents (T2) for OLS, or similarly, the number of years

between the endogenous and instrument earnings measures for IV. We present results for

a subset of the possible scenarios for pedagogical purposes, focusing on bias factors for the

grandparent coefficient.

We consider a base case with moderate levels of both mobility (ρ = 0.4) and persistence

in transitory shocks (δ = 0.5), shown in graphs (b) and (e) of Figures 1 and 2. Each dotted

line corresponds to a different T2, so moving from one line to another corresponds to changing

the grandparent income measure. Moving along a particular dotted line from left to right

corresponds to increasing T1, or improving the parental income measure.

16This is the same strategy taken by Mazumder (2005), and also following his strategy, we assume σ2
e

adjusts so that σ2
v =

σ2
e

1−δ2 holds.
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Figure 1: Attenuation factor (θ2) and spillover factor (ω2) in OLS coefficient for grandparent
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Note: This figure shows the values of the attenuation factor (θ2) and spillover factor (ω2) in the OLS
probability limit for the grandparent coefficient, plim(γ̂2,OLS) = γ2θ2 + γ1ω2. In graphs (a) - (c) , δ is set to
0, 0.5, 0.7, respectively, while ρ = 0.4 is constant. In graphs (d) - (f), ρ is set to 0.2, 0.4, and 0.6, respectively,
while δ = 0.5 does not change. Within a graph, moving along a dotted line corresponds to improving the
parental income measure, and going from one line to another reflects changes in the grandparent measure.

4.2 Size of bias in OLS estimates

Figure 1 shows the bias factors in the OLS estimate of the grandparent coefficient when we

use time-averages of income. If no measurement error were present, the attenuation factor

(θ2) would equal one and the spillover factor (ω2) would equal zero (so there would be no

bias). With measurement error, attenuation bias worsens as θ2 gets smaller than one and

spillover bias worsens as ω2 increases above zero.

Figures 1(a) - 1(c) provide the calculated attenuation coefficient for grandparents (θ2) for

different values of δ, with ρ fixed at 0.4. Across these graphs, we see a few important facts.

First, it is the number of years averaged over for grandparents that is crucial for reducing

the attenuation factor in the grandparent coefficient (and vice-versa for parents). Second,
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for a given grandparent income measure, taking a longer-term average for parents (going

from left to right) has minimal impact, and the effect is actually in the opposite direction,

very slightly worsening attenuation. Third, moving from classical measurement error to a

moderate level of persistence (δ = 0.5) in graph (b), we see that although time-averaging

for grandparents still substantially increases the attenuation factor, it does so to a lesser

extent relative to the classical case for a given T2. In general, the degree of persistence in

the transitory component of income, or δ, is key parameter in determining the size of the

attenuation factor. The intergenerational correlation, ρ, has little impact on the attenuation

bias, so we do not show the attenuation factors with different ρ here, though these results

are available upon request.

The issue of spillover bias in the grandparent coefficient, on the other hand, is present

because of ρ. In fact, the size of ρ, along with the parent coefficient γ1, are primary deter-

minants of the size of the overall spillover bias.17 Graphs (d) - (f) in Figure 1 show how the

spillover factor ω2 changes with different values of ρ, now holding δ = 0.5 fixed. When ρ

is small (0.2), the spillover coefficient ω2 is also somewhat small. When we triple ρ to 0.6

the extent of spillover also approximately triples. This combined with the fact that γ1 is

also likely larger for countries with larger ρ implies that OLS estimates for such societies are

more susceptible to positive bias in grandparent coefficients.

There are also important patterns with regard to income measure construction. First,

the key to reducing the spillover bias in the grandparent coefficient is time-averaging for

the parental income measure. Even with a 25-year average for the grandparent income

measure—which is not yet feasible in many datasets—the parental measure is still important

for reducing spillover. For example, in the moderate case with ρ = 0.4 in 1(e), going from

T1=1 to a long-term average with T1=25 reduces the spillover coefficient from about 20% to

17Although ρ and γ1 are closely related and we expect them to generally follow similar patterns across
countries, there are a few differences in what is captured in each. ρ reflects intergenerational transmission
between the parent and grandparent generations and abstracts from changes in income inequality. γ1, on
the other hand, reflects transmission between the child and parent generations, conditional on grandparents.
Changes in income inequality from the grandparent to parent generation would be reflected in γ1.
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about 4% when using a 25-year average for grandparents.

Second, for a given parental income measure, averaging over more years for grandparents—

as we would do to reduce potential attenuation bias in the grandparent coefficient—actually

worsens the spillover bias in the grandparent coefficient. Again, consider Figure 1(e), now

looking at the scenario of using an annual income measure for parents (T1=1), and going

from using one year to a 25-year average for grandparents; the spillover factor doubles from

ω2 = 0.1 (10%) to ω2 = 0.2 (20%). If the true γ2 = 0, there is no attenuation to be concerned

about, rather the time-averaging for grandparents is creating a spurious positive grandpar-

ent coefficient. This is illustrated later in Figure 3(b). The intuition here is that improving

the grandparent measure is increasing the correlation between the two observed regressors,

which results in a rise in the spillover.

Third, in countries with large ρ it takes far more years of observed parental incomes

to eliminate/mitigate the spillover bias. When ρ = 0.6, for example, even using 30-year

averages of income for parents and grandparents—which is not yet possible in any datasets

we know of—the spillover bias is not eliminated.

4.3 Size of bias in IV estimates

While we see above that using time-averages with small T can leave substantial bias in

OLS estimates, there are more promising results with IV estimation. Figure 2 presents the

computed attenuation (θ2) and spillover (ω2) factors for IV estimation using an individual’s

annual income measure in year s to instrument for that individual’s income in year t. In

the figures, T1 and T2 now refer to the difference in years (s-t) between the instrument and

endogenous measure for parents (going from left to right in each graph) and grandparents

(going from one line to another), respectively. Of course, with classical measurement error

in Figure 2(a), IV is consistent for any choice of income years. With AR(1) persistence

in the transitory component, even though attenuation bias is again worse with larger δ,

the attenuation can be nearly eliminated using income measures in a relatively short time
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period (up to about 10 years with high δ). As with OLS, the key to reducing the grandparent

attenuation factor is increasing T2, or improving the grandparent measure. For a moderate

degree of persistence in the transitory component (δ = 0.5) the attenuation factor θ2 is about

0.65 (35% attenuation bias) when using consecutive annual income measures, and reaches

about 0.99 (1%) when using a 6-year difference for grandparents.

We see similarly promising results for the spillover factors in Figures 2(d) - 2(f). The

spillover factor is similar to OLS when T = 1, with an ω2 of approximately 0.1 (10%) with

moderate mobility (ρ = 0.4). However, the spillover bias is nearly eliminated with only about

a 6-year time span of income for parents and grandparents, giving ω2 < 0.01. Although the

spillover is again worse with larger ρ, it is still eliminated with relatively short time spans

of income. Also similar to OLS, it is the parental income measure that drives the spillover

bias reduction, with the same result that improving the grandparental measure may worsen

spillover, now only for very small T1.

We focus most of our discussion here on the biases in the grandparent coefficient, which

is often the focus of multigenerational studies. The analogous results hold for the parent

attenuation and spillover factors as they are identical with the stationarity assumption, and

are symmetric without stationarity (available upon request). Recall, the extent to which the

spillover factor (ω1) affects the magnitude of the parental coefficient estimate depends on the

size of γ2. Since this is presumably small relative to γ1, spillover bias will not generally be

problematic for the parent coefficient, so changing the grandparent income measure should

not have appreciable impacts on our estimate of γ1. Rather, addressing attenuation bias

is the main issue for the parent coefficient, as is customary with intergenerational income

regressions.

4.4 Life-cycle variation

These simulation results are enlightening for multigenerational regressions, but have ab-

stracted from the two age-related sources of bias: the lifecycle variation in σ2
v and in the
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Figure 2: Attenuation factor (θ2) and spillover factor (ω2) in IV coefficient for grandparent

0

.2

.4

.6

.8

1

θ2

0 5 10 15 20 25
Parent Endog/Instr Yrs Apart (T1)

(a) Classical errors-in-variables (δ=0)

0

.2

.4

.6

.8

1

θ2

0 5 10 15 20 25
Parent Endog/Instr Yrs Apart (T1)

(b) Moderate AR(1) persistence in vit (δ=.5)

0

.2

.4

.6

.8

1

θ2

0 5 10 15 20 25
Parent Endog/Instr Yrs Apart (T1)

(c) Strong AR(1) persistence in vit (δ=.7)

0

.1

.2

.3

.4

.5

ω2

0 5 10 15 20 25
Parent Endog/Instr Yrs Apart (T1)

(d) High Mobility (ρ=.2)

0

.1

.2

.3

.4

.5

ω2

0 5 10 15 20 25
Parent Endog/Instr Yrs Apart (T1)

(e) Moderate Mobility (ρ=.4)

0

.1

.2

.3

.4

.5

ω2

0 5 10 15 20 25
Parent Endog/Instr Yrs Apart (T1)

(f) Low Mobility (ρ=.6)

1 5 10 15 20 25
Instrument/Endogenous years apart for Grandparent (T2):

Note: This figure shows the values of the attenuation factor (θ2) and spillover factor (ω2) in the IV probability
limit for the grandparent coefficient, plim(γ̂2,IV ) = γ2θ2 + γ1ω2. In graphs (a) - (c) , δ is set to 0, 0.5, 0.7,
respectively, while ρ = 0.4 is constant. In graphs (d) - (f), ρ is set to 0.2, 0.4, and 0.6, respectively, while
δ = 0.5 does not change. Within a graph, moving along a dotted line corresponds to improving the parental
income measure, and going from one line to another reflects changes in the grandparent measure.

association between annual and lifetime income (λgt). The implications of the former are

fairly straightforward. A larger transitory variance share means a noisier income measure,

so for each number of years of income Tg, the attenuation factor is smaller (meaning worse

attenuation bias). The spillover factor tends to be similar for small T , but then greater for

large T . For example, if we make the transitory variation more important and set σ2
v

σ2
xt

= 0.7

so σ2
x

σ2
xt

= 0.3, then time-averaging over 25 years only reduces the attenuation bias to 23%

(θ2=0.77) for OLS. The spillover factor is only reduced to 0.07 (7%) with a 25-year aver-

age income measure. For IV, the implications are less extreme. At Tg = 6, the spillover

coefficient is below 0.02 and the attenuation factor reaches 0.98.

The implications of lifecycle variation in the association between annual and lifetime
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income for parents or grandparents, reflected by λgt, are more complicated, and we present

analogous results for this in Appendix Figures B.1-B.4. The attenuation coefficient for OLS

follows the same patterns found in previous studies for the intergenerational regression.

Attenuation (θg) is worse when income is measured at older ages and potentially becomes

amplification bias for younger ages. The spillover factor (ωg) is larger for incomes at younger

ages and smaller for incomes at older ages, reinforcing the attenuation or amplification bias

from θg. Considering the combined implications of the lifecycle effects on θg and ωg, the

OLS coefficient estimates of γg are possibly biased upward when income is measured at too

young of ages and likely biased downward when measured at older ages.

With IV estimation, it is the age at which the endogenous earnings is measured that

drives lifecycle bias. If measured at younger ages when λgt < 1, this can result in substan-

tial amplification bias even after increasing Tg, while older ages with λgt > 1 exacerbates

attenuation bias. A simple way to test for this source of lifecycle bias in IV estimates—and

potentially bound the true coefficient—is to do IV estimation twice, where the instrument

and endogenous measures are reversed. For example, suppose there is an income measure

from a younger age where λgt < 1 and another income measure from an older age where

λgt > 1. Using the income from the younger age to instrument for the older age income can

provide a lower bound (due to worsened attenuation). Exchanging these to use the older

age income to instrument for the younger age income may produce an upper bound (due to

possible amplification bias). Appendix B provides further discussion along with examples of

this.

4.5 Illustrating a spurious grandfather coefficient

To illustrate the overall consequences of the bias factors in Figures 1-2 for the actual esti-

mates researchers obtain, we next present figures with the corresponding coefficient estimates

of γ1 and γ2 for our base case. The parent-grandparent intergenerational correlation (ρ) is

0.4 and there is moderate persistence in the transitory component of earnings (δ = 0.5). We
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choose γ1 = 0.4 and γ2 = 0 to be the underlying population parameters as these are plau-

sible population values for our sample from Norway and reveal the potential for a spurious

grandparent coefficient in this setting.

Figure 3: OLS and IV coefficients when ρ = 0.4, δ = 0.5, γ1 = 0.4, γ2 = 0
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Note: This figure shows the values of OLS and IV regression coefficients using our equations for the respective
probability limits. We set γ1=0.4 and γ2 =0, and use the attenuation and spillover factors from our simulation
base case of ρ=0.4 and δ = 0.5.

Figures 3(a)-3(c) provide OLS coefficient estimates from three different exercises in ad-

justing the income measures for parents and grandparents. The x-axis indicates the number

of years used in the average income measure. To start, we treat the measures for parents and

grandparents symmetrically in 3(a), increasing the number of years averaged over for both

generations (so T1=T2 always). The coefficient estimates show that simultaneously averaging

over more years for parents and grandparents both reduces attenuation bias in γ̂1,OLS as well

as the spillover bias in γ̂2,OLS. (We know there is no attenuation bias in γ̂2,OLS because we

set γ2 = 0.)
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Next, we isolate the effects of changing the grandparent measure in 3(b), by using what

would be considered a reasonable measure for parent’s income—a 10-year average. This

illustrates the result that improving the grandparent income measure is causing an increase

in γ̂2,OLS, a result that would typically be interpreted as reducing attenuation bias. In

our controlled setting here, we know that this is actually increasing the size of ω2, hence

increasing the size of the spurious grandparent coefficient.

Figure 3(c) presents estimates from the opposite exercise, where we use a 10-year average

for grandparents’ income, but vary the number of years in the parental income average. The

coefficient for parents increases as we reduce attenuation bias by averaging over more years,

a standard result for parent-child regressions also. The coefficient estimate for grandparents

decreases as the spillover bias is reduced, illustrating the importance of the parental income

measure to our estimate of the grandparent coefficient.

Turning to the IV estimates in the three bottom graphs of Figure 3, the x-axis now indexes

the difference in years between the instrument and endogenous earnings measure. First, in

3(d), we adjust the parental and grandparent income measures symmetrically, increasing the

years between the instrument and endogenous measures. The rising time-distance in the

instrumenting causes more dramatic reductions in attenuation bias and spillover bias in the

first few years, essentially eliminating the attenuation and spillover bias around T = 6 years.

To gauge differential sensitivity to changing the parent or grandparent income instru-

ment distance, we also do exercises analogous to those for OLS. The stable estimates in

3(e) are based on using a 6-year instrument for parents while adjusting the grandparent

endogenous/instrument time distance. This shows that the parental instrument is key to

mitigating biases.

Conversely, using a 6-year instrument for grandparents while increasing the time distance

between the parental measures in Figure 3(f), the estimates follow a similar pattern to when

both measures were changed symmetrically in 3(d). Comparing the first few grandparent

estimates in 3(d) with those in 3(f) shows that using a “good” measure for grandparents
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(6-year instrument) in 3(f) inflates the grandparent coefficient (worsens spillover) when we

do not use a good enough instrument for parents also (i.e., for small T1). When we are

able to use a 6-year distance in instrument and endogenous income for both generations

though—which is feasible in some datasets now—IV does appear to nearly eliminate bias.

In general, our simulation suggests that how parental income is measured is important

for reducing biases. The parent coefficient estimates themselves follow familiar patterns from

intergenerational studies, but less intuitive results arise for the grandparent coefficient. For

a given parental income measure, improving the grandparent measure worsens spillover bias

in the grandparent coefficient, which would otherwise be interpreted as reducing attenuation

bias. Further, even using ideal long-term averages of income during midlife does not eliminate

the spillover bias. For this reason, we also propose an IV approach as a supplementary

exercise to gauge bias, because it has the advantage of dramatically reducing, and potentially

eliminating, the biases with only about 7 years of income.

Our simulations also highlight the importance of ρ and γ1 in the magnitude of spillover

bias, which means extra caution should be taken with cross-country comparisons. Standard

practice is to use identically constructed income measures in the respective countries to

facilitate a valid comparison. Given our simulation results, this may not be enough to avoid

misleading conclusions. A country with a larger ρ or γ1 requires more years of parental

incomes to avoid incorrectly estimating a positive grandparent coefficient when the true

parameter is zero or negative. For example, if γ2 = −.05 and γ1 = .4 in our simulation (with

δ = .5 and ρ = .4), it would take about 10 years of parental income—for any grandparent

measure—to estimate a negative value for γ̂2. If γ1 = .6 in this scenario, then it takes 15-20

years of parent incomes to obtain a negative grandparent coefficient. If ρ is also .6, then

even 30 years of parental income does not guarantee a negative γ̂2.

Finally, the results in this section are based on intergenerational elasticities (IGEs). We

show in Appendix C.2 that running regressions on ranks, rather than log incomes, does

not remove the potential for spillover bias. Even in rank-rank regressions where ranks are
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constructed based on 20-year income averages, there is potential for estimation of spurious

grandfather coefficients.

While these simulation results are useful to show the nature of the biases under a known

data generating process, we now turn to our administrative data to illustrate the implications

of these biases in practice.

5 Data and empirical results

5.1 Data

For our empirical analysis we use administrative data from Norway. This data has a uniquely

long full-population coverage of tax records, making it possible to follow individual incomes

annually from 1967 onwards. We use data on labor income (pensjonsgivende inntekt, income

that qualifies for the Norwegian public pension system). This includes wages and income

from self-employment. The tax files include an individual identifying number that allows

linkage to the Central Population Register, which has information on family links (fathers’

and mothers’ ID) for most individuals born in the 1940s or later.

The offspring generation is comprised of men born 1974-1978, with incomes measured at

ages 32-36 (until 2015). This age range is selected to minimize lifecycle bias and allow for

multi-year averages to reduce error variance, while also observing long time spans of their

grandfathers’ incomes at reasonable ages. Fathers and paternal grandfathers are identified

using the population register. We use a slightly higher age range (see below) for fathers and

grandfathers because of data availability and because the ages are consistent with attempting

to avoid lifecycle bias based on evidence in Nilsen et al. (2012) for similar cohorts in Norway.

To avoid sample composition differences across specifications and approaches, we present

results based on a balanced sample where all three generations meet the following income

requirements.

Sons must have positive income in at least three of five years from ages 32-36. The income
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measures are based on the log of annual labor income so we exclude observations with non-

positive earnings. Included in our various constructions of earnings measures for fathers and

grandfathers are averages over 2, 3, 4, 5, 6, 10, 15, 20, and 25 years. We require 3 or more

years of positive earnings, but in practice there are at least 7 years of positive incomes for the

longer-term averages. Our final analysis sample is comprised of 5,064 sons matched to their

fathers and paternal grandfathers. Table 1 provides descriptive statistics for this sample,

along with the general population weighted by the sample birth year distribution, as well as

the unweighted population.

Table 2: Descriptive statistics

Population Population
Sample (weighted) (unweighted)

Men M+W Men M+W Men M+W

Mean income 371,326 318,171 357,248 304,896 356,160 303,053
Std. dev of income 178,604 162,742 216,022 191,711 217,213 191,891
N (unique individuals) 5,064 9,831 171,939 335,155 171,939 335,155
Fathers’ generation (Birth year range: 1950-1958)
Mean income 281,787 284,347 267,366 269,213
Std. dev of income 136,513 137,667 195,184 199,443
N (unique individuals) 4,673 8,451 292,288 292,288
Fathers’ fathers’ generation (Birth year range: 1928-1935)
Mean income 201,850 202,197 194,142 203,323
Std. dev of income 70,656 70,299 90,290 96,932
N (unique individuals) 4,455 7,790 164,825 164,825

Notes: The sample is comprised of individuals in the 1974-1978 birth cohorts with income in at least 3
years during ages 32-36, with fathers and grandfathers fulfilling the income requirements described in the
text. Incomes shown are at age 34 for the index generation and at age 40 for the father and grandfather
generations. Income is CPI-adjusted (1998 NOK; 1 NOK = 0.13 USD). Birth year ranges for fathers and
grandfathers refer to the 5th and 95th percentile of the birth year distribution.

The average labor income of sons in our sample in the year they turn 34 (during 2004-

2008) is 371,326 NOK (inflation adjusted to 1998). This is slightly higher than the population

average shown in the second set of columns. One possible reason for the discrepancy is the

role of immigrant background. Immigrants do in general have lower incomes than natives,

and because of the strict requirement that both fathers’ and grandfathers’ identities are
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known in the registers, there are very few immigrants in our data set. The distribution of

incomes (as measured by the standard deviation) is also somewhat lower in our sample than

for the full population.

The fathers in our sample were born in the 1950s, so the corresponding “population”

information is for all men born in the same period (weighted by the distribution of birth

years in the sample), regardless of whether they have children. The slightly lower mean

income in the general population is likely a reflection of the fact that lower-income men

have a lower probability of starting a family. We see a similar difference in the distribution

of grandfathers, born in the late 1920s and early 1930s. The birth year distribution of

grandfathers is more skewed than that of fathers. Because grandfathers have to be born

after 1928 in order to be young enough to have an observed income at age 39 (in 1967 when

the income data start), we cut off a tail of older grandfathers while there is still a tail of

younger grandfathers born in the 1930s. This also means that the average father-son age

difference in our sample is likely to be lower than in the general population.

Although it would be nice to have a larger and unquestionably representative sample

for Norway, it is not necessary for one of our primary purposes in this paper—to illustrate

how bias from income measurement can inflate the grandparent coefficient or even produce

a spurious grandparent effect. For this, it is most important to maintain a balanced sample

across methods to avoid sample composition issues driving different patterns in our results.

Additionally, we present results for males only. The tendency to omit females (especially

mothers and grandmothers) from intergenerational income analyses arises in large part from

female labor force participation patterns and the inability to observe outcomes. In our case,

given that the rationale for our methodological choices is based on earnings processes for

males, it is appropriate to focus on sons, fathers and grandfathers in our analysis.18

18The results for samples including daughters are similar, and are discussed below (Section 5.5).
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5.2 Empirical approach

Focusing on the multigenerational model in equation (2), we estimate a series of regressions to

examine the conditional association between grandfathers’ income and their grandchildren’s

income and the underlying implications of income measurement issues. For all regressions,

the dependent variable is the 5-year average of log income for offspring over ages 32-36, and

we include dummy variables for the index generation’s year of birth. Using log income (or

averages of log income) as our income measures means the coefficients have the interpretation

of intergenerational income elasticities (IGEs).

To examine the effects of income measurement choices on our estimates, we vary the

estimation method as well as the measures we use for fathers and grandfathers. We first

use OLS with annual log income measures, and then proceed to average over 2 - 6 years of

annual log income, as well as 10-, 15-, 20-, and 25-year averages for longer-term measures,

centering all of these averages around age 43 to minimize lifecycle bias. Next, we turn to

IV estimation using annual log income measures 2 - 6 years apart as the instrument and

endogenous regressors. Although the advantage of our IV approach is bias reduction in this

short time span, we also extend to 10 years for a longer time distance between incomes.

Since lifecycle bias in IV is driven by the age of the endogenous measure, we measure this

at age 43, and measure the instrument income at age 43+T .

To clearly illustrate the bias spillover implications, we also vary the income measures

separately for fathers and grandfathers as done in the simulations. First, we consider the case

where we have a “good” measure of fathers’ income—a 10-year average of log income—and

then vary how grandfathers’ income is measured as described above, using OLS to estimate

the models. Second, we do the same exercise using the 10-year average of grandfathers’ log

income, but varying how fathers’ income is measured.

Next, we use analogous approaches with IV estimation. We first isolate the effects of

changing the grandfather IV approach by using the 6-year instrument for fathers while vary-

ing that for grandfathers. Then we illustrate the spillover bias in the grandfather coefficient
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by using the 6-year instrument for grandfathers while varying the instrument for fathers.

5.3 OLS results

The results from our multigenerational regressions are presented in Figure 4. All results are

based on our balanced sample of 5,064 sons matched to their fathers and paternal grandfa-

thers, unless otherwise noted.

Figure 4: OLS and IV estimates from three-generation regressions
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Note: This figure shows the OLS and IV coefficient estimates and 95% confidence intervals from a series of
multigenerational regressions. For OLS, the x-axis indexes the number of years used in the average income
measure for the generation(s) for which the measure is being adjusted. For IV, this is instead the number of
years between the instrument and endogenous incomes (measured at age 43).

5.3.1 Improving fathers’ and grandfathers’ income measures

First, we consider the effects of time-averaging by simultaneously increasing the number of

years that we average over for fathers’ and grandfathers’ income. With two competing biases,
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it is less clear what we should expect for the grandfather coefficients in this setting. There

is attenuation bias from measurement error in “own” income, yet there is an upward bias

from measurement error in fathers’ income. For fathers we expect the coefficient to increase,

as reducing attenuation bias will outweigh any changes in spillover bias. Empirically this

is what we find in Figure 4(a), as the coefficient estimate on fathers’ income increases from

about 0.09 to 0.21 as we average over more years. These estimates are very similar to father-

son estimates for this sample (shown in Appendix E). The coefficient on grandfathers’

income fluctuates around 0.04-0.05 for regressions with 1-15 year averages of income. The

estimates decrease slightly to 0.03 and 0.02 for the 20- and 25-year measures, constituting

a 50% reduction in the grandfather coefficient when going from a 1-year to 25-year average.

However, these decreases in the 20- and 25-year estimates could also reflect lifecycle bias

(e.g., growth in σ2
v/T ) as the average extends into older ages.

Given the stability of the father coefficient estimates it appears that there is little or

no spillover bias in the father coefficients from the measurement error in the grandfather

income. This is also consistent with a very small grandfather coefficient in the population.

To disentangle the two sources of bias (attenuation from own income measure versus am-

plification from the other generation’s income measure), we next present results where we

change only one generation’s income measure at a time.

5.3.2 Improving grandfathers’ income measure

We now use a “good” measure of fathers’ income (10-year average) throughout all models,

while changing grandfathers’ income measure as before. On one hand, this isolates the effect

of changing the grandfather income measure on the coefficient estimate for fathers. The

OLS coefficient estimate for fathers remains essentially constant at 0.17, the same value as

the 10-year estimate in 4(a), as we go from using annual income to longer-term averages

for grandfathers’ income. This implies there is no detectable spillover bias in the coefficient

estimate for fathers, which is consistent with the true γ2 being zero (or very small).
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On the other hand, this also illustrates the effect on the grandfather coefficient of im-

proving the grandfather measure. The grandfather coefficient increases slightly as we average

over more years. We would tend to interpret this as from reducing attenuation bias, but

our simulation showed that improving the grandfather measure (for a given father measure)

would also increase the spillover bias in the grandparent coefficient. However, here we cannot

distinguish this from decreasing attenuation bias since we do not know the true population

parameters.

5.3.3 Improving fathers’ income measure

Figure 4(c) presents results from varying fathers’ income measures while holding the measure

for grandfathers constant at a 10-year average (T2 = 10). By using a “good” measure of

income for grandfathers, we can isolate the attenuation in the coefficient for fathers, and,

more importantly for this setting, the spillover of bias into the coefficient for grandfathers.

As expected, the coefficient for fathers increases from about 0.09 to about 0.21 as we average

over more years, in line with our results from symmetrically improving income measures for

fathers and grandfathers in 4(a).

For grandfathers, the coefficients are decreasing as we improve the income measure for

fathers, showing the reduction in spillover bias. The grandfather coefficient estimate falls

by 30%, from 0.06 to 0.04, when we change from using an annual to long-term average for

fathers.

Taken together, Figures 4(a)-4(c) show how influential the parental income measure is

in determining the results of a multigenerational regression. Having a long-term measure

for grandfathers but an annual or short-term measure for fathers would lead to misleading

results on long-term mobility. Fortunately, this is an unlikely scenario for many datasets,

though is something to be mindful of as researchers use historical datasets that are limited

in the number of incomes observed for an individual.

35



5.4 IV results

Our IV approach has the advantage, at least theoretically in our simple simulation, of nearly

eliminating bias in this setting when Tg is large enough for the degree of persistence in vitg

(e.g., after 6-10 years in our simulation). The bottom graphs in Figure 4 present the IV

results from exercises analogous to those for OLS above.

5.4.1 Improving fathers’ and grandfathers’ income measures

First, in 4(d) we increase the distance between years measured for endogenous and instrument

income measures as indicated on the x-axis, simultaneously for fathers and grandfathers.

The coefficient for fathers’ income increases from 0.11 to 0.25 as we increase the number of

years between the endogenous and instrument income measures, similar to the father-son

IV results.19 The coefficient for grandfathers’ income fluctuates around 0.04-0.06 for the 1-6

year measures, falling by 40% from 0.05 at 1 year to 0.03 at 10 years, and is not statistically

significant for the 2+ year estimates.20 In general, the pattern of increasing father coefficients

clearly indicates mitigating attenuation bias. The pattern for grandparents is not quite as

clear, though the smaller coefficient from the 10-year estimate does suggest that spillover bias

from poor income measures for fathers led to an upward bias in the grandfather coefficient.

5.4.2 Improving grandfathers’ income measure

We vary fathers’ and grandfathers’ income measures separately to more carefully examine

spillover bias. We first use the 6-year instrument as a “good” measure for fathers’ income

while changing the instrument for grandfathers’ income. The pattern of results is similar to

the analogous OLS results, with the coefficient on fathers’ income remaining steady around

19For all IV estimations, the Kleibergen-Paap F -statistics confirm that our first stage is sufficiently strong
(F ≥ 32 in all regressions, and F = 112 on average for regressions with income at age 43 as the endogenous
measure).

20The samples were slightly reduced again as T2 increased, with the following sample sizes for T2=3,4,5,6,
and 10 year estimates; N=4,859 (96%), N=4,686 (93%), N=4,617 (91%), N=4,548 (90%), and N=4,221
(83%), respectively. However, replicating all of Figure 4 for this smaller sample reveals similar patterns, so
sample composition does not appear to be driving this small estimate.
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0.18-0.20. The coefficient for grandfathers is never statistically significantly different from

zero, but does increase from 0.03 to 0.05 as we increase T2, improving the grandparent

income measure. This increase could be the consequence of reducing the attenuation factor

or increasing the spillover factor, as shown in our simulation.

5.4.3 Improving fathers’ income measure

We isolate the effects of measurement issues arising from fathers’ income measures. Using

a “good” measure for grandfathers’ (the 6-year instrument) in all estimations, we vary the

instrument for fathers’ income. In Figure 4(f) the coefficient on fathers’ income rises from

0.11 to 0.24 as we increase the years between the endogenous and instrument income measures

from 1 to 10 years, which is nearly identical to the IV results in 4(d). Although the coefficient

on grandfathers’ income fluctuates, on average we do see it decrease as we improve the

measure for fathers’ income, falling by about 30%, from 0.07 to 0.05.

5.5 Robustness checks

5.5.1 Including women

The main analysis is conducted with only men in all three generations. This allows us to

focus on a single lineage and avoid measurement issues related to the relatively low labor force

participation of women in the initial two generations. However, for the offspring generation,

there are fewer differences between men and women. Figure 4 is replicated in the Appendix

for the full sample with both men and women in the youngest generation (Figure D.7). In

general, the coefficients are slightly lower than for men only, and slightly more precise. The

reduced level reflects generally lower intergenerational persistence typically found for samples

including women, while the improved precision follows from the increased sample size. The

patterns in the coefficients are nearly identical to our results based on sons only.
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5.5.2 Income ranks

As rank correlations have been increasingly used in intergenerational income mobility studies,

we replicate our analysis here using ranks of average income measures for all generations.

Despite the inherent non-classical measurement error in income ranks, the sensitivities of the

rank correlations tend to follow patterns very similar to the IGE, typically with less extreme

degrees of bias (e.g., Nybom & Stuhler, 2017), which is what we find in our sample as well.21

We present estimates from regressions using income ranks in Figure 5. There is less

spillover bias than found with the IGE, but it is still an issue as illustrated by the decreasing

grandparent coefficients in 5(c). We see increasing grandparent coefficients in Figure 5(b)

which again is a combination of reduced attenuation (if γ2 > 0) and worsening spillover

bias. When ranks of long-term averages are used, the coefficient estimates are very similar

in magnitude to the corresponding IGEs, and suffer less attenuation bias with few years of

income. The IV estimates also follow similar patterns, exhibiting more stability in that they

fluctuate less than the IGE, but are generally higher in magnitude.

The robustness of rank correlations could be beneficial for multigenerational studies,

especially those limited in years of income. If, for example, only one year of income is

available for fathers, the rank-rank estimates are likely preferable as this is still the more

important measure for bias. There appears to be less attenuation in the father coefficient and

less spillover in the grandfather coefficient relative to the IGEs. If longer-term averages are

possible, the rank-rank and IGEs are very similar, so the choice between the two measures

remains a conceptual one.

21Studying biases in rank correlations algebraically is complicated because even purely random error
in underlying incomes leads to non-classical measurement error in income ranks. Following the approach
of Nybom & Stuhler (2017) and Haider & Solon (2006) to capture the non-classical error with a linear
projection of the observed rank on true rank leads to OLS probability limits that reflect the same patterns
we show for the IGE. Most notably, it is still the parental income measure that is most influential to biases,
and improving the grandparent measure for a given parental measure worsens spillover in the grandparent
coefficient (see Appendix C.1).
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Figure 5: OLS and IV estimates from three-generation rank-rank regressions
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Note: This figure shows the OLS and IV coefficient estimates and 95% confidence intervals from a series of
multigenerational regressions. For OLS, the x-axis indexes the number of years used in the average income
measure for the generation(s) for which the measure is being adjusted. For IV, this is instead the number of
years between the instrument and endogenous incomes (measured at age 43).

6 Discussion

Overall, our OLS and IV results suggest that the true grandfather coefficient for our sample is

very small, or possibly even zero. The OLS estimates based on longer-term income averages

are around 0.02-0.03. The IV estimate based on the long-term instruments is about 0.03.

None of the longer-term estimates are statistically significantly different from zero, although

the IV estimates are quite imprecise. More importantly, the patterns in our empirical results

mirror those found in the simulation, especially for OLS. Our IV estimates vary more widely,

perhaps due to sensitivity to lifecycle effects, and also suggest persistence in the transitory

component of income matters. Although the IV estimates are imprecise, they do provide

a useful secondary empirical exercise for gauging bias. In general, our results show that

39



empirically researchers must be aware of how sensitive the grandfather coefficient is to the

construction of the parental income measure, and the tendency for the estimates to be

positively biased.

6.1 Relating the empirical results to the simulation

We observe several patterns in our empirical results that closely follow the hypothetical

scenario presented with our simulation where we set γ1 = 0.4 and γ2 = 0. However, as far

as magnitude is concerned, all of our OLS and IV coefficient estimates for fathers are well

below 0.4, with the largest IV or OLS estimates ranging 0.21-0.25. As for the grandfather

coefficient, the OLS estimates are potentially consistent with γ2 = 0, as the smallest estimate

from using the longest-term averages is 0.02. However, we noted this could be due to lifecycle

bias, as a decline is also observed in the son-grandfather specifications for these longer-term

averages. Fortunately, our IV approach exploits a shorter time span, avoiding this potential

life cycle bias.

Considering our IV results, one slight divergence from our simulation results is that when

we use the 6-year instrument for fathers across all specifications—which theoretically should

nearly eliminate spillover bias—we see the grandfather coefficient fluctuating and slightly

increasing from about 0.03 to about 0.05. In the other two sets of IV results the estimates

also do not decline as dramatically as in our simulation example with γ2 = 0.

In light of the IV results, it appears our empirical results could reflect a scenario with

γ1 = 0.25 and γ2 = 0.05. To illustrate this, we recreate simulation Figure 3 with these revised

population parameters in Figure 6. Now comparing these estimates with our empirical

results, both the patterns and magnitudes are more closely aligned. This is not meant to

be conclusive evidence that these are the population parameters for Norway, or even for

our sample. Rather, we wish to point out that our IV approach is a useful supplementary

exercise to the usual OLS estimates that researchers obtain.
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Figure 6: OLS and IV coefficients from simulation when ρ = 0.4, δ = 0.5, γ1 = 0.25,
γ2 = 0.05
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Note: This figure shows the values of OLS and IV regression coefficients using our equations for the respective
probability limits. We set γ1=0.25 and γ2 =0.05, and use the attenuation and spillover factors from our
simulation base case of ρ=0.4 and δ = 0.5.

6.2 Concluding comments

This paper illustrates the implications of measurement error in the multigenerational setting.

The spillover of bias from measurement error in the parents’ income measures could lead to

misleading conclusions regarding the effects of grandparents and our general understanding

of long-term mobility. Our simulations show that even using a long-term average of income

over 25 years during mid-life does not eliminate the potential for estimating a spurious

grandfather coefficient. In addition, even when the true grandparent coefficient is zero, for

a given measure of fathers’ income, increasing the years we average over for grandfathers

actually worsens the spillover bias. If we observe increasing coefficient estimates as a result,

this could be misinterpreted as reducing attenuation bias in actual data settings. The IV
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approach we propose has the advantage of theoretically mitigating (or eliminating) these

biases with relatively short timespans of income, depending on the degree of persistence in

the transitory component of income.

With our administrative data, we show how the spillover of bias from measurement issues

in fathers’ income causes upward bias in the coefficient for grandfathers’ income. With a 10-

year average income measure for grandfathers, improving only the fathers’ income measure

from an annual measure to a 15-year average reduces the grandfather coefficient by 30%.

We find a similar degree of bias reduction in our IV estimates, that require only two income

measures in a 7- and 10-year timespan for grandfathers and fathers, respectively. In fact,

our OLS results based on averaging over log incomes indicates that spillover bias may be

causing a spurious grandfather coefficient estimate. Our IV approach is consistent with this,

and although the estimates are imprecise, the approach has the advantage of avoiding some

potential lifecycle bias in the OLS estimates.

Our empirical results are based on very good administrative data and in a setting with

relatively low levels of intergenerational persistence. Our results should thus be considered

a lower bound on the potential bias. Cross-country comparisons are further complicated by

the fact that countries with higher levels of intergenerational persistence will be susceptible

to substantially larger spillover biases. This could distort comparative conclusions even

when income measures are constructed uniformly across countries. Although we focused on

measurement issues with income in this paper, it is well known that measurement issues arise

with all other status measures used as well. Some of the theoretical results presented here are

based on models specific to earnings dynamics, but the approximately classical measurement

error case is more broadly applicable. The issue of spillover bias from measurement issues

is not unique to income and should be taken into consideration in any multigenerational

regression setting.
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Santiago. 2019. Automated linking of historical data. NBER Working Paper 25825.

Adermon, Adrian, Lindahl, Mikael, & Waldenström, Daniel. 2018. Intergenerational wealth

mobility and the role of inheritance: Evidence from multiple generations. Economic Jour-

nal, 128(612), F482–F513.

Adermon, Adrian, Lindahl, Mikael, & Palme, Mårten. 2021. Dynastic human capital, in-
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Appendix (for online publication)

A Derivations

The following provides derivations of the probability limits shown in the main text of the

paper, though here we do not assume stationarity as done in the paper. This means that

σ2
xg and σ2

vg are allowed to vary across generations (g = 1, 2).

In the population, the true multigenerational process is:

yi0 = γ1xi1 + γ2xi2 + εi. (7)

We observe annual earnings measures, x∗it1 for fathers and x∗it2 for grandfathers:

x∗it1 = xi1 + vit1, (8a)

x∗it2 = xi2 + vit2. (8b)

So the equation we estimate with our data is:

yi0 = γ1x
∗
it1 + γ2x

∗
it2 + ε∗it. (9)
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A.1 OLS estimation

We can derive the OLS estimator of γ1 using the Frisch-Waugh-Lovell theorem and some

algebra:

γ̂1,OLS = (x∗
′

1 M2x
∗
1)

−1x∗
′

1 M2y (10a)

= [x∗
′

1 (I − x∗2(x
∗′
2 x

∗
2)

−1x∗
′

2 )x∗1]
−1x∗

′

1 (I − x∗2(x
∗′
2 x

∗
2)

−1x∗
′

2 )y (10b)

= [x∗
′

1 x
∗
1 − x∗

′

1 x
∗
2(x

∗′
2 x2)

−1x∗
′

2 x
∗
1]

−1[x∗
′

1 y − x∗
′

1 x
∗
2(x

∗′
2 x

∗
2)

−1x∗
′

2 y] (10c)

=

[
N∑
i=1

x∗2i1 −
N∑
i=1

x∗i1x
∗
i2

N∑
i=1

x∗2i2

N∑
i=1

x∗i2x
∗
i1

]−1 [ N∑
i=1

x∗i1yi −
N∑
i=1

x∗i1x
∗
i2

N∑
i=1

x∗2i2

N∑
i=1

x∗i2yi

]
(10d)

...

γ̂1,OLS =

∑N
i=1 x

∗
i1yi
∑N

i=1 x
∗2
i2 −

∑N
i=1 x

∗
i1x

∗
i2

∑N
i=1 x

∗
i2yi∑N

i=1 x
∗2
i1

∑N
i=1 x

∗2
i2 −

(∑N
i=1 x

∗
i1x

∗
i2

)2 (10e)

Similarly, for γ2, we get:

γ̂2,OLS =

∑N
i=1 x

∗
i2yi
∑N

i=1 x
∗2
i1 −

∑N
i=1 x

∗
i1x

∗
i2

∑N
i=1 x

∗
i1yi∑N

i=1 x
∗2
i1

∑N
i=1 x

∗2
i2 −

(∑N
i=1 x

∗
i1x

∗
i2

)2 (11)

Taking the probability limits gives us:

plim(γ̂1,OLS) =
cov(y, x∗1)var(x

∗
2) − cov(y, x∗2)cov(x∗1, x

∗
2)

var(x∗1)var(x
∗
2) − cov(x∗1, x

∗
2)

2
(12a)

plim(γ̂2,OLS) =
cov(y, x∗2)var(x

∗
1) − cov(y, x∗1)cov(x∗1, x

∗
2)

var(x∗1)var(x
∗
2) − cov(x∗1, x

∗
2)

2
(12b)

Now we substitute equations (8a) and (8b) and use assumptions underlying classical

errors-in-variables (CEV): x1 and x2 are orthogonal to v1 and v2 as well as orthogonality

between v1 and v2. For notation, we define σ2
xg ≡ var(xig) and σ2

vg ≡ var(vitg) for g = 1, 2
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and ρ ≡ corr(x1, x2). Then the elements of the probability limits are:

var(x∗g) = σ2
xg + σ2

vg (13a)

cov(x∗1, x
∗
2) = ρσx1σx2 (13b)

cov(y, x∗1) = γ1σ
2
x1

+ γ2ρσx1σx2 (13c)

cov(y, x∗2) = γ2σ
2
x2

+ γ1ρσx1σx2 (13d)

Substituting these into (12a) and (12b) and rearranging gives us:

plim(γ̂1,OLS) = γ1
σ2
x1

σ2
x1

+ σ2
v1

(
σ2
x2

+σ2
v2

σ2
x2

(1−ρ2)+σ2
v2

) + γ2
σx1σx2

(
ρσ2
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σ2
x2

(1−ρ2)+σ2
v2
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σ2
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+ σ2
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(
σ2
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+σ2
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) (14a)

plim(γ̂2,OLS) = γ1
σx1σx2

(
ρσ2
v1

σ2
x1

(1−ρ2)+σ2
v1

)
σ2
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+ σ2
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+ σ2
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(
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+σ2
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(1−ρ2)+σ2
v1

) (14b)

Although assuming that the transitory components are sources of classical measurement

error does lend to the simplicity of these probability limits, it is generally believed that there

is some persistence in the vitg over time. So we can write the AR(1) process for the vit where

δ is the autocorrelation coefficient,

vitg = δvit−1g + eit. (15)

With this process for vitg, each σ2
vg is replaced with σ2

e

1−δ2 in the probability limits above.

Or when we use T-year averages of annual income, each σ2
vg is replaced with:

1

Tg

σ2
e

1 − δ2

[
1 + 2δ

(
Tg − 1−δTg

1−δ

Tg(1 − δ)

)]
. (16)
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A.2 Instrumental variables (IV) estimation

Our IV approach uses log annual earnings in year s (z∗isg) to instrument for log annual

earnings in year t (x∗itg) for that individual. So, in addition to equations (8a) and (8b)

above, we have for our instruments:

z∗is1 = xi1 + vis1, (17a)

z∗is2 = xi2 + vis2. (17b)

We define A2 = I − x∗2(z
∗′
2 x

∗
2)

−1z∗
′

2 , and again use the Frisch-Waugh-Lovell theorem and

some algebra to derive the IV estimators:
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Similarly, for γ2, we get:

γ̂2,IV =

∑N
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∗
i2yi
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∗
i1x

∗
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Taking the probability limits we get:

plim(γ̂1,IV ) =
cov(z∗1 , y)cov(z∗2 , x

∗
2) − cov(z∗1 , x

∗
2)cov(z∗2 , y)

cov(z∗1 , x
∗
1)cov(z∗2 , x

∗
2) − cov(z∗1 , x

∗
2)cov(z∗2 , x

∗
1)

(20a)

plim(γ̂2,IV ) =
cov(z∗2 , y)cov(z∗1 , x

∗
1) − cov(z∗2 , x

∗
1)cov(z∗1 , y)

cov(z∗2 , x
∗
2)cov(z∗1 , x

∗
1) − cov(z∗2 , x

∗
1)cov(z∗1 , x

∗
2)

(20b)

Now we substitute equations (8a), (8b), (17a), and (17b) and use assumptions underlying

classical errors-in-variables (CEV): x1 and x2 are orthogonal to v1 and v2; vit1 and vit2 are

uncorrelated; vitg and visg are uncorrelated. For notation, we define σ2
xg ≡ var(xig) and

σ2
vg ≡ var(vitg) for g = 1, 2 and ρ ≡ corr(x1, x2), allowing us to write the elements of the

probability limits as:

cov(z∗g , x
∗
g) = σ2

xg + cov(visg, vitg) = σ2
xg (21a)

cov(x∗1, z
∗
2) = cov(x∗2, z

∗
1) = ρσx1σx2 (21b)

cov(y, z∗1) = γ1σ
2
x1

+ γ2ρσx1σx2 (21c)

cov(y, z∗2) = γ2σ
2
x2

+ γ1ρσx1σx2 (21d)

Substituting these into the probability limits in (20a) and (20b), and then doing some

algebra shows that plim(γ̂1,IV ) = γ1 and plim(γ̂2,IV ) = γ2. However, if we consider the

case of an AR(1) process for vitg, then (21a) does not hold. Rather, cov(visg, vitg) = δTg
σ2
eg

1−δ2

where Tg = t− s is the years between the earnings measures xitg and zisg. In this case, the

probability limits of the IV estimators are the same as those for the OLS estimators in (14a)

and (14b) except that σ2
vg is replaced with δTg

σ2
eg

1−δ2 .

Table A.1 summarizes what takes the place of σ2
vg for g = 1, 2 under the two different sce-

narios for the transitory component (CEV or AR(1)) for each of our estimation approaches.
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Table A.1: Elements that take place of σ2
vg in plim(γ̂1) and plim(γ̂2)

Estimation method vitg ∼ CEV vitg ∼AR(1)

OLS using annual income measures σ2
vg

σ2
e1

1−δ2

OLS using Tg-year averages of income
σ2
vg

Tg
1
Tg

σ2
e1

1−δ2

[
1 + 2δ

(
Tg−

1−δTg
1−δ

Tg(1−δ)

)]

IV using annual incomes Tg years apart n.a. δTg
σ2
e1

1−δ2

B Lifecycle Effects

B.1 Derivations: lifecycle effects in multigenerational regression

For the multigenerational regression, we consider lifecycle profiles in income for fathers and

grandfathers separately, where the relationship between annual and lifetime or permanent

income is written

x∗it1 = λ1txi1 + vit1, (22a)

x∗it2 = λ2txi2 + vit2. (22b)

Considering again the probability limits in equations (14a) and (14b) in Appendix A with

the same orthogonality conditions, we can use the equations in (22a) and (22b) to write the

elements of the probability limits as:

var(x∗g) = λgtσ
2
xg + σ2

vg (23a)

cov(x∗1, x
∗
2) = λ1tλ2tρσx1σx2 (23b)

cov(y, x∗1) = λ1tγ1σ
2
x1

+ λ1tγ2ρσx1σx2 (23c)

cov(y, x∗2) = λ2tγ2σ
2
x2

+ λ2tγ1ρσx1σx2 (23d)
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Then the OLS probability limits in equations (14a) and (14b) are now:

plim(γ̂1,OLS) = γ1
λ1tσ

2
x1

λ21tσ
2
x1

+ σ2
v1

(
λ22tσ

2
x2

+σ2
v2

λ22tσ
2
x2

(1−ρ2)+σ2
v2

) + γ2
λ1tσx1σx2

(
ρσ2
v2

λ22tσ
2
x2

(1−ρ2)+σ2
v2

)
λ21tσ
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x1

+ σ2
v1

(
λ22tσ

2
x2

+σ2
v2

λ22tσ
2
x2

(1−ρ2)+σ2
v2

) (24a)

plim(γ̂2,OLS) = γ1
λ2tσx1σx2

(
ρσ2
v1
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2
x1

(1−ρ2)+σ2
v1

)
λ22tσ

2
x2
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(
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x1

+σ2
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2
x1
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2
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+ σ2
v2

(
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2
x1

+σ2
v1

λ21tσ
2
x1

(1−ρ2)+σ2
v1

) . (24b)

The equations for our instruments can now be written:

z∗is1 = λ1sxi1 + vis1, (25a)

z∗is2 = λ2sxi2 + vis2. (25b)

With IV estimation, if we assume the vitg are essentially white noise error, then the

elements of the probability limits are:

cov(z∗g , x
∗
g) = λgtλgsσ

2
xg + cov(visg, vitg) = λgtλgsσ

2
xg (26a)

cov(x∗1, z
∗
2) = λ1tλ2sρσx1σx2 (26b)

cov(x∗2, z
∗
1) = λ2tλ1sρσx1σx2 (26c)

cov(y, z∗1) = λ1sγ1σ
2
x1

+ λ1sγ2ρσx1σx2 (26d)

cov(y, z∗2) = λ2sγ2σ
2
x2

+ λ2sγ1ρσx1σx2 . (26e)

The probability limits of the estimators are:

plim(γ̂1,IV ) = γ1
1

λ1t
(27a)

plim(γ̂2,IV ) = γ2
1

λ2t
. (27b)
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This illustrates the fact that it is the age at which the endogenous income measure is observed

that drives the direction and magnitude of the bias in the IV estimates.

With an AR(1) process for vitg, the elements of the IV probability limits can be written:

cov(z∗g , x
∗
g) = σ2

xg + cov(visg, vitg) = λgtλgsσ
2
xg + δTgg

(
σ2
e

1 − δg

)
(28a)

cov(x∗1, z
∗
2) = λ1tλ2sρσx1σx2 (28b)

cov(x∗2, z
∗
1) = λ2tλ1sρσx1σx2 (28c)

cov(y, z∗1) = λ1sγ1σ
2
x1

+ λ1sγ2ρσx1σx2 (28d)

cov(y, z∗2) = λ2sγ2σ
2
x2

+ λ2sγ1ρσx1σx2 . (28e)

The probability limits of the IV estimators are below, except that σ2
vg is replaced by

δ
Tg
g

(
σ2
e

1−δg

)
:

plim(γ̂1,IV ) = γ1
λ1sσ

2
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+ σ2
v1
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)
(29a)

plim(γ̂2,IV ) = γ1
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(
ρσ2
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) .
(29b)

Although an AR(1) process for vitg complicates the probability limits, it still holds that

the lifecycle bias is primarily driven by the age at which the endogenous income measure is

observed.
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B.2 Simulation results with lifecycle effects

This section provides figures showing how the attenuation and spillover biases change with

the point in the lifecycle at which income is measured for fathers and grandfathers (varying

λ1t and λ2t). Figures B.1 and B.2 show that the attenuation factor for OLS estimates is

larger when λgt > 1 and is an amplification factor when λgt < 1, respectively. This is the

same pattern shown previously for two-generation (e.g., father-son) regressions. The changes

in the magnitude of the spillover factor reinforce the attenuation or amplification bias.

Figure B.1: Attenuation and spillover in OLS estimates when λ1t = λ2t = 1.2
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Note: This figure shows the values of the attenuation factor (θ2) and spillover factor (ω2) in the OLS
probability limit for the grandparent coefficient, plim(γ̂2,OLS) = γ2θ2 + γ1ω2. In graphs (a) - (c) , δ is set to
0, 0.5, 0.7, respectively, while ρ = 0.4 is constant. In graphs (d) - (f), ρ is set to 0.2, 0.4, and 0.6, respectively,
while δ = 0.5 does not change. Within a graph, moving along a dotted line corresponds to improving the
parental income measure, and going from one line to another reflects changes in the grandparent measure.

For IV estimates, lifecycle bias is driven by the age at which the endogenous measure is

observed. Figures B.3 and B.4 show that the attenuation and spillover factors are affected

similarly to those for OLS. The attenuation factor for IV estimates is larger when λgt > 1
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Figure B.2: Attenuation and spillover in OLS estimates when λ1t = λ2t = 0.8
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Note: This figure shows the values of the attenuation factor (θ2) and spillover factor (ω2) in the OLS
probability limit for the grandparent coefficient, plim(γ̂2,OLS) = γ2θ2 + γ1ω2. In graphs (a) - (c) , δ is set to
0, 0.5, 0.7, respectively, while ρ = 0.4 is constant. In graphs (d) - (f), ρ is set to 0.2, 0.4, and 0.6, respectively,
while δ = 0.5 does not change. Within a graph, moving along a dotted line corresponds to improving the
parental income measure, and going from one line to another reflects changes in the grandparent measure.

(Figure B.3) and is an amplification factor when λgt < 1 (Figure B.4). The changes in the

magnitude of the spillover factor reinforce the attenuation or amplification bias.

B.3 Bounding with IV: empirical illustration of lifecycle effects

In our main results, we use income at age 43 as the endogenous income measure to abstract

from lifecycle bias. Ideally, λgt is approximately one at this age, but even if not, we still

know that λgt is constant as we change our instrument income measure. Our instrument

is thus taken from subsequent later ages as we increased the years between the income

measures to reduce correlation in the transitory component, which was our primary focus.

However, we can also use the fact that the direction and magnitude of the lifecycle bias in
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Figure B.3: Attenuation and spillover in IV estimates when λ1t = λ2t = 1.2, λ1s = λ2s = 1
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Note: This figure shows the values of the attenuation factor (θ2) and spillover factor (ω2) in the IV probability
limit for the grandparent coefficient, plim(γ̂2,IV ) = γ2θ2 + γ1ω2. In graphs (a) - (c) , δ is set to 0, 0.5, 0.7,
respectively, while ρ = 0.4 is constant. In graphs (d) - (f), ρ is set to 0.2, 0.4, and 0.6, respectively, while
δ = 0.5 does not change. Within a graph, moving along a dotted line corresponds to improving the parental
income measure, and going from one line to another reflects changes in the grandparent measure.

IV estimates are driven by the age of the endogenous income measure to bound the true

parameter. As discussed above, measuring the endogenous income measure when λgt < 1

(measuring income too young) causes amplification bias while λgt > 1 (too old of ages) causes

attenuation bias. This means we can perform two sets of IV estimations to bound the true

population parameters: one set where we treat the younger age income as endogenous (thus

potentially causing amplification bias), and another set where we treat the older age income

as endogenous (potentially causing attenuation bias).

We first illustrate the bounding in Figure B.5 with estimates from two-generation regres-

sions, where the left is for son-father regressions and the right for son-grandfather regressions.

As in our main approach, the endogenous income measure is that observed at age 43, and
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Figure B.4: Attenuation and spillover in IV estimates when λ1t = λ2t = 0.8, λ1s = λ2s = 1
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Note: This figure shows the values of the attenuation factor (θ2) and spillover factor (ω2) in the IV probability
limit for the grandparent coefficient, plim(γ̂2,IV ) = γ2θ2 + γ1ω2. In graphs (a) - (c) , δ is set to 0, 0.5, 0.7,
respectively, while ρ = 0.4 is constant. In graphs (d) - (f), ρ is set to 0.2, 0.4, and 0.6, respectively, while
δ = 0.5 does not change. Within a graph, moving along a dotted line corresponds to improving the parental
income measure, and going from one line to another reflects changes in the grandparent measure.

the instrument is T years later. We see the father-son estimates rising as we increase T in the

first graph, consistent with the correlation in the transitory component of income declining

over time. Our second set of estimates below this (“Reverse IV”) are from swapping the

instrument and endogenous measures, so that λgt may be greater than one as we are using

the older ages as the endogenous measure. In this case, our estimates tend to be smaller

than the main IV results, consistent with the algebraic result that the estimates are further

attenuated due to measuring endogenous income at older ages.

The graphs on the right side of Figure B.5 are for regressions relating sons’ income to

grandfathers’ income. The IV estimates grow somewhat as we increase T , which is consistent

with the decreasing correlation in the transitory component, since we are holding λ2t fixed.
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To explore the role of lifecycle effects, we turn to estimates from our reverse IV approach

treating the older age income as endogenous, provided in the bottom (right) graph of Figure

B.5. These estimates are very similar, suggesting the lifecycle profile in λ2t may not vary

substantially during this age span for grandfathers.

Figure B.5: Two-generation IV estimates when income at younger versus older age is used
as the endogenous measure
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Note: This figure shows the IV and “Reverse IV” coefficient estimates and 95% confidence intervals from
son-father regressions and son-grandfather regressions. The x-axis indexes the number of years between the
instrument income and endogenous income. For IV, the endogenous measure is at age 43 and instrument at
age 43+T, while these are swapped for Reverse IV.

The graphs in Figure B.6 present the IV results from our main results for the multigener-

ational regression as well as analogous results from our reverse IV approach. The difference is

the same as discussed with the intergenerational case—we are now varying the age at which

we are measuring the income measure treated as endogenous, to assess lifecycle effects. Our

set of estimates in the top graphs use age 43 income as the endogenous measure, and our

set of estimates in the bottom graphs use the older age (43+T) income as the endogenous
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measure.

We first adjust the instrument for both fathers’ and grandfathers’ income at the same age,

using, respectively, fathers’ and grandfathers’ annual log income from a later year, increasing

the distance between years measured for endogenous and instrument income measures as

indicated on the x-axis. Similar to the intergenerational case, the coefficient on fathers’

income does appear somewhat sensitive to lifecycle bias, showing the same pattern but

at slightly lower levels than the intergenerational regression. The grandfather coefficient

estimates are similar to the main results, with the exception of the 10-year estimate, though

these estimates are based on a smaller sample as noted in the main text.

Next we vary father and grandfather income measures separately to more carefully ex-

amine spillover bias. We first use the 6-year instrument for fathers’ income while changing

the instrument for grandfathers’ income. The coefficient on fathers’ income remains steady,

and the reverse IV results are very similar to the main results. We then isolate the effects

of measurement issues arising from fathers’ income measures by using a “good” measure

for grandfathers’ (the 6-year instrument) in all estimations, while varying the instrument

for fathers’ income. These results are similar to the results in (d) where both fathers’ and

grandfathers’ income measures are varied simultaneously.
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Figure B.6: Three-generation IV estimates when income at younger versus older age is used
as the endogenous measure
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Note: This figure shows the IV and “Reverse IV” coefficient estimates and 95% confidence intervals from
a series of multigenerational regressions. The x-axis indexes the number of years between the instrument
income and endogenous income for the generation(s) for which the measure is being adjusted. For IV, the
endogenous measure is at age 43 and instrument at age 43+T, while these are swapped for Reverse IV.
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C Using income ranks in the multigenerational regres-

sion

C.1 Derivations for multigenerational regression with income ranks

The following provides derivations of probability limits analogous to those shown in the main

text of the paper, though here we are using (normalized) ranks of error-ridden incomes as

the status measure for each generation in the multigenerational model.

With classical measurement error, the attenuation bias in the IGE is driven by the

increased variance of observed incomes (through the variance of the transitory component).

With ranked incomes, by definition the variance of the (normalized) observed rank and true

rank are both 1/12.

When income ranks are used instead of (log) incomes, the nature of the measurement

error is complicated by the fact that there is necessarily (negative) correlation between the

true rank and the measurement error. This negative correlation arises from the fact that

ranks at the top (bottom) of the distribution cannot be misreported to be higher (lower)

ranks.

Given this, a classical measurement error framework is not appropriate. We follow the

approach of Nybom & Stuhler (2017) and Haider & Solon (2006) for modeling non-classical

measurement error with a linear projection of the observed outcome on the true value.

We now consider x∗itg, xig, and vitg to be the observed (annual) income rank, true (life-

time) income rank, and the (annual) error in ranks, respectively (for g = 1, 2 for parents,

grandparents). ρ denotes the parent-grandparent correlation in xig. Approximating the

non-classical measurement error with linear projections gives us the measurement equations:

x∗it1 = λ1txi1 + vit1, (30a)

x∗it2 = λ2txi2 + vit2, (30b)
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where λgt now reflects the quality of the observed income rank (i.e., how well it reflects the

true rank). The idea is that this reflects the non-classical nature of the measurement error

since λ1 and λ2 are less than (or equal to) one, and by definition of a linear projection, the

true values are orthogonal to the errors.

We can use the measurement equations above to write the elements of the probability

limits as:

var(x∗g) = 1/12 by definition (31a)

cov(x∗1, x
∗
2) = λ1tλ2tρ(1/12) (31b)

cov(y, x∗1) = λ1tγ1(1/12) + λ1tγ2ρ(1/12) (31c)

cov(y, x∗2) = λ2tγ2(1/12) + λ2tγ1ρ(1/12). (31d)

Substituting these into the probability limits in (12a) and (12b) and rearranging gives

us:

plim(γ̂1,OLS) = γ1 λ1t

(
1 − λ22tρ

2

1 − λ21tλ
2
2tρ

2

)
+ γ2 λ1t

(
ρ(1 − λ22t)

1 − λ21tλ
2
2tρ

2

)
(32a)

plim(γ̂2,OLS) = γ2 λ2t

(
1 − λ21tρ

2

1 − λ21tλ
2
2tρ

2

)
+ γ1 λ2t

(
ρ(1 − λ21t)

1 − λ21tλ
2
2tρ

2

)
. (32b)

The determinants of the size of bias follow the case with log incomes. Focusing on

the grandparent coefficient, attenuation is alleviated by using a better grandparent income

measure, and to a lesser degree by using a worse parent income measure and lower inter-

generational persistence levels. The spillover bias is primarily alleviated by using a better

parental income measure, and to a lesser degree by using a worse grandparent income mea-

sure (the counterintuitive result found with log incomes), and again countries with higher

persistence levels are susceptible to larger spillover bias.

For the IV approach, using rank income in year s to instrument for rank income in year
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t, we write the analogous measurement equations for our instruments:

z∗is1 = λ1sxi1 + vis1, (33a)

z∗is2 = λ2sxi2 + vis2. (33b)

Assuming visg and vitg are uncorrelated (as in CEV) leads to consistency of IV in the

log income case but does not lead to consistent estimates when using income ranks.22 The

probability limits of the estimators are:

plim(γ̂1,IV ) = γ1
1

λ1t
(1 − ρ2) (34a)

plim(γ̂2,IV ) = γ2
1

λ2t
(1 − ρ2) (34b)

Attenuation depends on how strong the income measure is for one’s own generation (λgt)

as well as the level of mobility (ρ). With no correlation between visg and vitg, there is no

spillover bias. Yet in our empirical results, we find evidence of spillover bias because the

grandfather coefficients decline as we improve the income measure for fathers (holding the

grandfather measure constant).

Kitagawa et al. (2018, p. 4) note, regarding the use of the linear projection approximation

and the resulting proposed correction in Nybom & Stuhler (2017), “While this property is

shown to hold approximately in their data, it is not generally known what assumptions on the

underlying distributions that can guarantee it.” Thus, instead of using a simple “simulation”

as we had done for the log income case in the main text, we use a simulation to generate a

synthetic sample to further evaluate how measurement error in income plays out in coefficient

22This is also true of the parent-child regression, as noted in footnote 13 of Nybom & Stuhler (2017).
With λyt as the slope coefficient in the linear projection for child income ranks, the parent-child regression

yields plim(β̂1,IV ) = β1
λyt

λ1t
. We do not address measurement error in child income ranks, consistent with the

rest of our paper where we do not vary child income measures, but λyt would similarly enter the probability
limits as a multiplicative factor.
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estimates from the multigenerational model with rank incomes used as status measures. This

is discussed in the next section.

C.2 Simulating measurement error with income ranks

As described in Section 2, some studies of multigenerational mobility are based on linear

regressions on income ranks rather than the conventional IGE setup. To verify that the

biases we document in this article are not exclusive to the log-log (IGE) specification, we

conduct a supplementary simulation exercise with rank-rank regressions.

We again consider a process (as in equation (2)),

yi0 = γ1xi1 + γ2xi2 + εi. (35)

In the benchmark analysis, y and x refers to log income. We here supplement this with an

analysis where y and x refer to an individual’s rank in the income distribution of their own

generation. As the errors in income ranks are non-classical, we do not solve for measurement

error in closed form (as in equations (4a) and (4b)). Rather, we construct a simulated

(synthetic) sample with known parameters and examine the rank coefficients that emerge

from an estimation on this synthetic sample.

The synthetic sample consists of 10,000 lineages. Each generation has a latent income

x, and has 25 annual income observations with a given error structure (discussed below).

We do not consider life cycle variation in this exercise. Each generation has exactly one

descendant, who inherits the latent income with parameter γ1 from the generation before

and γ2 from two generations before.

Initial incomes (the latent individual component) are drawn from a log-normal distri-

bution where the true parental coefficient γ1 is 0.4 and the true grandparental coefficient

γ2 is zero. In the following, we consider parameters on log incomes, though ranks are still

constructed based on the underlying incomes (e.g., on averages of incomes, not averages of
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log incomes).

The error structure is either classical errors-in-variables (see equation (3)) or AR(1)

(equation (5)). We set σ2
x = σ2

v = 1, δ = 0.5. In the CEV case the error term is drawn

from N(0,
√

(σ2
v)). In the AR1 case the error term for the first period is drawn similarly to

the error term for the AR1 case. Subsequent error terms are given by δ log(vt−1) + (1 − δ)e

where e is drawn from N
(

0,
√

1−δ2
(1−δ)2

)
.

Each lineage is simulated for 10 generations. Within each generation, 25 time periods

are simulated. We discard information from the five first generations, and verify that the

calculated coefficients are stable for generations 5-10. From a given simulation, we then get

six calculations for each parameter for the population of 10,000 lineages. We repeat the

simulation ten times.23

Table C.2 reports the regression results for the synthetic sample. Each line reports re-

gression coefficients on grandparents for regressions on six generations and 10,000 dynasties,

where the “true” grandparental coefficient is zero. The first panel lists results where the

error structure is classical errors-in-variables, while the second panel lists results where the

error structure is AR(1).

We observe from Table C.2 that the simulation corresponds well to the analytical results

from Section 3 and 4; the first two columns compare analytical and simulated results for

OLS, while the third and fourth do the same for IV. We therefore turn to the fifth column,

reporting rank-rank regression results, where an analytical calculation is not available.

We see from this rightmost column that the use of rank correlations does not remove the

issues concerning spillover bias. With a true coefficient of zero and a CEV error structure,

using ranks on one year of income gives a rank coefficient of 0.05. Increasing the number

of years of incomes over which the ranks are constructed reduces the coefficient somewhat,

but even with averages over 20 years a positive coefficient of around 0.016 is obtained. With

AR(1) the problem is even larger, with an average estimated coefficient of 0.023 even with

23We verify that the reported averages of coefficients do not depend on the “age” of the synthetic individual
at the time of measurement.
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Table C.2: Simulation results

Error structure
and number OLS (log-log) IV (log-log) Rank-Rank
of years True β2 (Analytical) (Simulated) (Analytical) (Simulated) (Simulated)
CEV, T = 1 0 0.0417 0.0418 0.0000 0.0009 0.0517
CEV, T = 3 0 0.0330 0.0340 0.0000 -0.0005 0.0400
CEV, T = 5 0 0.0250 0.0256 0.0000 -0.0020 0.0320
CEV, T = 10 0 0.0152 0.0159 0.0000 0.0028 0.0233
CEV, T = 20 0 0.0085 0.0090 0.0000 0.0006 0.0165
AR(1), T = 1 0 0.0404 0.0415 0.0407 0.0399 0.0476
AR(1), T = 3 0 0.0416 0.0402 0.0222 0.0181 0.0429
AR(1), T = 5 0 0.0399 0.0369 0.0072 0.0048 0.0387
AR(1), T = 10 0 0.0335 0.0302 0.0002 0.0005 0.0318
AR(1), T = 20 0 0.0239 0.0202 0.0000 0.0022 0.0230

Notes: Error structure is either CEV (classical errors-in-variables) or AR(1). T refers to the number of
years over which income is averaged (for OLS and for the construction of ranks) or the distance between
instrument and instrumented for IV.

20 years of income averages. Hence, we conclude that the issues of spillover bias documented

in this paper are not limited to IGE (log-log) measures of multigenerational persistence.
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D Robustness check using men and women

Below are the figures (analogous to the main results) for the sample with men and women

in the youngest generation.

Figure D.7: OLS and IV estimates from three-generation regressions. Men and women in
final generation.
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Note: This figure shows the OLS and IV coefficient estimates and 95% confidence intervals from a series of
multigenerational regressions with men and women included in the offspring generation. For OLS, the x-axis
indexes the number of years used in the average income measure for the generation(s) for which the measure
is being adjusted. For IV, this is instead the number of years between the instrument and endogenous
incomes (measured at age 43).
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E Two generation regressions

E.1 Biases in the child-parent regression

Our results for the attenuation factors in the multigenerational regression closely follow what

has been shown previously for income measurement related biases for the intergenerational

regression in equation (1). We provide a brief review of such findings here.

In the simple case of classical measurement error—or classical errors-in-variables (CEV)—

there are no lifecycle effects and parental log annual income in year t, xi1t, is decomposed

into a permanent component xi1 and a white noise error or transitory component, vi1t:

xi1t = xi1 + vi1t. (36)

In this case, we know that the OLS estimate of β1 is attenuated:

plim(β̂1,OLS) = β1
σ2
x1

σ2
x1 + σ2

v1

, (37)

where σ2
x1 = var(xi1) and σ2

v1 = var(vi1t). Taking the average over T years of parental log

income reduces the attenuation bias because σ2
v1 is then replaced by σ2

v1 / T in (37) (e.g.,

Solon, 1992). Under the strong assumptions of classical measurement error, instrumental

variables estimation (IV) (with a valid instrument) provides consistent estimates of β1 (e.g.,

Solon, 1992; Altonji & Dunn, 1991).

Now suppose the transitory component, vi1t, follows an AR(1) process with persistence

parameter δ:

vi1t = δvi1t−1 + ei1t. (38)

Then the OLS estimate converges to:24

24Solon (1992) originally noted this more complicated probability limit in footnote 17 of his paper, and
Mazumder (2005) subsequently examined the empirical implications.
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plim(β̂1,OLS) = β1
σ2
x1

σ2
x1 + 1

T

(
σ2
e1

1−δ2

)
φ
, (39)

where

φ = 1 + 2δ
T − 1−δT

1−δ

T (1 − δ)
. (40)

In this case, the attenuation bias is not reduced to the same extent by taking multi-year

averages (since 0 > δ > 1). The implications for IV are also less promising, in that the

correlation in the transitory components mean using an annual income measure in year s

to instrument for income in year t (or an average ending in year t) no longer provides a

consistent estimate. However, the bias shrinks as s gets further from t, as can be seen in

(41). Defining T = s− t, the probability limit of the IV estimator is:

plim(β̂1,IV ) = β1
σ2
x1

σ2
x1 + δT

σ2
e1

1−δ2
. (41)

So for both OLS and IV estimation, we know that some bias remains, and use income

measurement strategies to minimize the extant bias.25

Two features of the lifecycle patterns in income have been shown to bias estimates of

intergenerational persistence. First, there is lifecycle variation in the size of σ2
v1, which has

been found to be U-shaped with the smallest level being in the early 40s (e.g., Mazumder,

2001, 2005). When taking longer term averages of annual income that may extend into too

young or too old of ages, σ2
v/T can get larger if σ2

v1t grows fast enough, thus exacerbating

attenuation bias rather than reducing it.

Second, the relationship between annual incomes and permanent income changes over

the lifecycle, and this can lead to attenuation or amplification bias (e.g., Haider & Solon,

2006). To model this lifecycle variation, equation (3) becomes xi1t = λ1txi1 + vi1t. λ1t tends

25For example, Mazumder (2005) shows that there may be about 10% attenuation bias remaining even
when using a 30-year income average. More recently, Vosters & Nybom (2017) and Vosters (2018) look for
evidence of more substantial attenuation bias from measurement error with respect to a latent construct of
socioeconomic status, finding that the remaining bias is in line with earlier intergenerational studies.
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to be less than one at younger ages, reaches one around the early 40s when annual income is

a reasonable measure of average lifetime income, and then is greater than one at older ages.

Incorporating λ1t leads to

plim(β̂1,OLS) = β1
λ1tσ

2
x1

λ21tσ
2
x1 + σ2

v1

(42)

for OLS estimates from using an annual income measure for parents. If an annual measure

is used for offspring as well, plim(β̂1) in (42) is multiplied by λ0τ (the analogous parameter

relating annual income in year τ to permanent income for offspring). When a T-year average

of income is used, again σ2
v1 is replaced by σ2

v1/T and λ1t is replaced by the average over the

included years, λ̄1T .

In our proposed IV approach using one annual income measure (xi1t) to instrument for

another (xi1s), plim(β̂1) simplifies to β1
λ0τ
λ1t

, meaning it is the age at which the endogenous

income measure is observed that drives the size of the lifecycle bias. Further, this means

at too young of ages, λ1t < 1 so the bias is actually an amplification bias, while at too old

of ages, λ1t > 1, resulting in attenuation bias. This means that two sets of IV estimates—

one set with young ages as the endogenous measure and another set with older ages as the

endogenous measure—can be used as a supplementary exercise to bound the true population

parameter.

In summary, the lifecycle related bias in OLS or IV estimates can be attenuating or

amplifying in nature, as shown by studies emphasizing the importance of measuring annual

incomes during the age ranges for which λ1t and λ0τ (or λ̄1T ) are approximately 1 (Haider

& Solon, 2006; Nybom & Stuhler, 2014).

E.2 Empirical results

We also provide results for two-generation models using son-father pairs and son-grandfather

pairs to both show that our data follows the results on well-known biases and to serve as
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a reference point for our multigenerational regressions including grandparents. Figure E.8

provides the OLS estimates (top panel) and IV estimates (bottom panel), along with 95%

confidence intervals.

As expected, the father-son intergenerational income elasticities in Figure E.8(a) rise as

we average over more years of income for fathers (ranging from about 0.10 to 0.21).

Figure E.8: OLS and IV estimates from two-generation regressions
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Note: This figure shows the OLS and IV coefficient estimates and 95% confidence intervals from son-father
regressions and son-grandfather regressions. For OLS, the x-axis indexes the number of years used in the
average income measure for the oldest generation in each regression. For IV, this is instead the number of
years between the instrument income and endogenous income (measured at age 43).

Figure E.8(c) shows the estimates from our IV approach, using one log annual income

measure to instrument for another. To the extent that the transitory component is persis-

tent over time, we expect the estimates to increase as we increase the years between the

endogenous measure and instrument (proceeding left to right). In general, this is what we

see for the father-son persistence estimates. The estimates range from 0.12 for the case using

income only one year later as the instrument to 0.21 when using income measures 6 years
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apart, and 0.25 when using measures 10 years apart.26

Figures E.8(b) and E.8(d) provide the analogous results for a regression relating sons’

income to only grandfathers’ income. We see the expected pattern of OLS estimates increas-

ing as we average over more annual log income measures, with the estimates ranging from

0.05 when using annual log income to about 0.08 when using longer term averages. There is

a slight decline in the estimate based on the 25-year averages of log income to 0.07, which

may arise from lifecycle effects in the form of either increasing λ̄2T or increasing σ2
vt.

The IV estimates in Figure E.8(d) exhibit a similar pattern, with estimates growing as

the years between the endogenous and instrument income measures increases from one to six

years, ranging from 0.07 to 0.09, and still similar at 0.10 for 10 years though this estimate

is less precise.27

Figure E.9 provides results for the two-generation regressions with the sample including

men and women in the youngest generation. The patterns are very similar to the results for

the main sample.

F Tables of regression coefficients for all empirical re-

sults

F.1 Tables for Men only (main sample)

26As with the main results, in all IV estimations, the Kleibergen-Paap F -statistics confirm that our first
stage is sufficiently strong (F ≥ 32 in all regressions, and F = 112 on average for regressions with income at
age 43 as the endogenous measure).

27The samples were slightly reduced again as T2 increased, with the following sample sizes for T2=3, 4, 5,
6, and 10 year estimates; N=4,908 (97%), N=4,769 (94%), N=4,712 (93%), N=4,701 (93%), and N=4,470
(88%), respectively. However, estimating these regressions on the most restrictive sample produces similar
results, so sample composition changes are not driving our results.
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Table F.3: OLS estimates from two-generation models. Note: 10-year averages start at age
38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages
start at age 31.Estimates from Figure E.8 (panels a and b) in bold.

(a) Sons and fathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years 0.137 0.119 0.107 0.091 0.097 0.086 0.100

(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)
2 years 0.148 0.131 0.117 0.108 0.105 0.108

(0.019) (0.018) (0.017) (0.015) (0.015) (0.015)
3 years 0.153 0.136 0.124 0.114 0.119

(0.020) (0.018) (0.017) (0.016) (0.016)
4 years 0.155 0.141 0.128 0.126

(0.019) (0.018) (0.017) (0.016)
5 years 0.158 0.142 0.137

(0.019) (0.018) (0.017)
6 years 0.158 0.149

(0.019) (0.018)
10 years 0.174

(0.019)
15 years 0.190

(0.019)
20 years 0.209

(0.020)
25 years 0.214

(0.020)
(b) Sons and grandfathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years 0.070 0.054 0.043 0.048 0.054 0.045 0.041

(0.019) (0.020) (0.019) (0.015) (0.016) (0.016) (0.013)
2 years 0.073 0.058 0.054 0.059 0.059 0.051

(0.020) (0.021) (0.018) (0.016) (0.017) (0.016)
3 years 0.071 0.063 0.062 0.063 0.060

(0.022) (0.020) (0.018) (0.018) (0.017)
4 years 0.073 0.068 0.066 0.065

(0.021) (0.019) (0.019) (0.018)
5 years 0.077 0.071 0.067

(0.020) (0.020) (0.019)
6 years 0.078 0.072

(0.021) (0.020)
10 years 0.079

(0.021)
15 years 0.082

(0.021)
20 years 0.075

(0.020)
25 years 0.065

(0.019)
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Table F.4: IV estimates from two-generation models. Estimates from Figure E.8 (panels c
and d) in bold.

(a) Sons and fathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years 0.154 0.147 0.138 0.133 0.115 0.149 0.127

(0.022) (0.024) (0.021) (0.020) (0.018) (0.023) (0.018)
2 years 0.167 0.167 0.172 0.146 0.177 0.159 0.160

(0.026) (0.025) (0.025) (0.023) (0.027) (0.023) (0.022)
3 years 0.180 0.199 0.174 0.214 0.171 0.190 0.192

(0.027) (0.030) (0.028) (0.033) (0.025) (0.026) (0.030)
4 years 0.207 0.191 0.248 0.192 0.199 0.234 0.171

(0.031) (0.031) (0.037) (0.028) (0.027) (0.036) (0.026)
5 years 0.202 0.261 0.224 0.221 0.239 0.205 0.205

(0.032) (0.039) (0.031) (0.029) (0.036) (0.032) (0.025)
6 years 0.270 0.237 0.257 0.247 0.212 0.247 0.234

(0.041) (0.034) (0.033) (0.037) (0.033) (0.031) (0.031)
10 years 0.277 0.320 0.363 0.279 0.250 0.258 0.214

(0.044) (0.040) (0.049) (0.046) (0.041) (0.041) (0.035)
(b) Sons and grandfathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years 0.086 0.059 0.077 0.077 0.067 0.067 0.059

(0.034) (0.027) (0.024) (0.022) (0.024) (0.021) (0.021)
2 years 0.072 0.088 0.103 0.082 0.076 0.072 0.065

(0.033) (0.027) (0.029) (0.030) (0.024) (0.025) (0.027)
3 years 0.105 0.109 0.101 0.093 0.083 0.072 0.077

(0.034) (0.031) (0.036) (0.028) (0.029) (0.030) (0.031)
4 years 0.128 0.103 0.117 0.092 0.086 0.079 0.081

(0.037) (0.037) (0.035) (0.033) (0.035) (0.032) (0.035)
5 years 0.114 0.116 0.114 0.091 0.090 0.085 0.089

(0.040) (0.035) (0.039) (0.037) (0.036) (0.036) (0.041)
6 years 0.135 0.105 0.114 0.104 0.094 0.099 0.012

(0.040) (0.038) (0.045) (0.042) (0.040) (0.046) (0.036)
10 years 0.145 0.142 0.016 0.054 0.099 0.041 -0.004

(0.061) (0.065) (0.048) (0.053) (0.048) (0.058) (0.053)
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Table F.5: “Reverse IV” estimates from two-generation models.

(a) Sons and fathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years 0.192 0.164 0.147 0.119 0.130 0.109 0.121

(0.026) (0.024) (0.022) (0.018) (0.019) (0.017) (0.017)
2 years 0.232 0.199 0.163 0.147 0.145 0.132 0.141

(0.032) (0.029) (0.025) (0.022) (0.021) (0.021) (0.020)
3 years 0.265 0.212 0.186 0.157 0.162 0.143 0.155

(0.036) (0.031) (0.029) (0.023) (0.024) (0.022) (0.022)
4 years 0.274 0.228 0.194 0.161 0.173 0.150 0.169

(0.037) (0.034) (0.029) (0.025) (0.025) (0.023) (0.025)
5 years 0.300 0.227 0.200 0.168 0.172 0.151 0.162

(0.041) (0.033) (0.031) (0.025) (0.025) (0.025) (0.024)
6 years 0.292 0.234 0.206 0.157 0.171 0.148 0.160

(0.040) (0.035) (0.031) (0.023) (0.026) (0.024) (0.025)
10 years 0.297 0.241 0.203 0.167 0.188 0.156 0.160

(0.046) (0.036) (0.033) (0.029) (0.031) (0.028) (0.024)
(b) Sons and grandfathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years 0.092 0.083 0.053 0.064 0.079 0.059 0.064

(0.025) (0.032) (0.023) (0.020) (0.023) (0.022) (0.020)
2 years 0.109 0.085 0.059 0.081 0.079 0.071 0.066

(0.029) (0.033) (0.026) (0.027) (0.024) (0.025) (0.022)
3 years 0.109 0.088 0.068 0.080 0.086 0.064 0.064

(0.029) (0.034) (0.031) (0.027) (0.028) (0.026) (0.027)
4 years 0.111 0.098 0.069 0.083 0.090 0.063 0.075

(0.030) (0.038) (0.031) (0.030) (0.031) (0.030) (0.027)
5 years 0.116 0.097 0.074 0.091 0.103 0.077 0.076

(0.031) (0.038) (0.034) (0.030) (0.033) (0.030) (0.028)
6 years 0.120 0.091 0.068 0.112 0.107 0.069 0.066

(0.033) (0.039) (0.035) (0.034) (0.031) (0.032) (0.027)
10 years 0.139 0.102 0.054 0.097 0.110 0.081 0.066

(0.040) (0.050) (0.035) (0.034) (0.033) (0.036) (0.028)
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Table F.6: OLS estimates from three-generation models. Note: 10-year averages start at age
38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages
start at age 31. Estimates from Figure 4 (panel a) in bold.

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years F 0.133 0.116 0.105 0.088 0.093 0.083 0.097

(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)
G 0.048 0.039 0.027 0.036 0.043 0.037 0.030

(0.019) (0.020) (0.019) (0.015) (0.015) (0.016) (0.013)
2 years F 0.143 0.127 0.113 0.103 0.100 0.105

(0.020) (0.018) (0.017) (0.015) (0.015) (0.016)
G 0.047 0.037 0.034 0.044 0.046 0.038

(0.021) (0.021) (0.018) (0.016) (0.017) (0.016)
3 years F 0.148 0.131 0.119 0.109 0.114

(0.020) (0.018) (0.017) (0.016) (0.016)
G 0.043 0.039 0.041 0.047 0.044

(0.022) (0.020) (0.018) (0.018) (0.017)
4 years F 0.150 0.135 0.123 0.121

(0.020) (0.018) (0.017) (0.016)
G 0.043 0.044 0.045 0.046

(0.021) (0.020) (0.019) (0.017)
5 years F 0.152 0.136 0.132

(0.019) (0.018) (0.017)
G 0.046 0.046 0.044

(0.021) (0.020) (0.019)
6 years F 0.152 0.143

(0.019) (0.018)
G 0.047 0.045

(0.021) (0.020)
10 years F 0.167

(0.019)
G 0.044

(0.021)
15 years F 0.183

(0.020)
G 0.043

(0.021)
20 years F 0.204

(0.021)
G 0.032

(0.020)
25 years F 0.210

(0.021)
G 0.023

(0.019)

78



Table F.7: OLS estimates from three-generation models, long-term average for fathers. Note:
10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at
age 33; and 25-year averages start at age 31. Estimates from Figure 4 (panel b) in bold.

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years F 0.168 0.170 0.171 0.170 0.169 0.170 0.170

(0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
G 0.043 0.032 0.016 0.023 0.033 0.025 0.023

(0.019) (0.020) (0.019) (0.015) (0.015) (0.016) (0.013)
2 years F 0.168 0.170 0.170 0.168 0.168 0.169

(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)
G 0.044 0.030 0.024 0.033 0.035 0.029

(0.021) (0.021) (0.018) (0.016) (0.017) (0.015)
3 years F 0.169 0.169 0.169 0.168 0.168

(0.019) (0.019) (0.019) (0.019) (0.019)
G 0.039 0.032 0.032 0.036 0.035

(0.022) (0.020) (0.018) (0.018) (0.017)
4 years F 0.168 0.168 0.168 0.168

(0.019) (0.019) (0.019) (0.019)
G 0.039 0.037 0.035 0.036

(0.021) (0.020) (0.019) (0.017)
5 years F 0.168 0.168 0.168

(0.019) (0.019) (0.019)
G 0.042 0.039 0.036

(0.021) (0.020) (0.019)
6 years F 0.167 0.168

(0.019) (0.019)
G 0.043 0.040

(0.021) (0.020)
10 years F 0.167

(0.019)
G 0.044

(0.021)
15 years F 0.167

(0.019)
G 0.048

(0.021)
20 years F 0.168

(0.019)
G 0.041

(0.020)
25 years F 0.169

(0.019)
G 0.033

(0.019)
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Table F.8: OLS estimates from three-generation models, long-term average for grandfathers.
Note: 10-year averages start at age 38; 15-year averages start at age 36; 20-year averages
start at age 33; and 25-year averages start at age 31. Estimates from Figure 4 (panel c) in
bold.

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years F 0.132 0.114 0.101 0.086 0.092 0.081 0.096

(0.020) (0.017) (0.016) (0.015) (0.014) (0.015) (0.015)
G 0.048 0.055 0.058 0.062 0.061 0.064 0.059

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
2 years F 0.142 0.125 0.110 0.102 0.099 0.103

(0.020) (0.018) (0.017) (0.015) (0.015) (0.016)
G 0.047 0.053 0.056 0.059 0.060 0.059

(0.021) (0.021) (0.021) (0.021) (0.021) (0.021)
3 years F 0.147 0.129 0.118 0.108 0.113

(0.020) (0.018) (0.017) (0.016) (0.016)
G 0.047 0.052 0.055 0.058 0.057

(0.021) (0.021) (0.021) (0.021) (0.021)
4 years F 0.149 0.134 0.122 0.120

(0.020) (0.018) (0.017) (0.016)
G 0.047 0.052 0.055 0.055

(0.021) (0.021) (0.021) (0.021)
5 years F 0.151 0.136 0.131

(0.019) (0.018) (0.017)
G 0.047 0.052 0.053

(0.021) (0.021) (0.021)
6 years F 0.152 0.143

(0.019) (0.018)
G 0.048 0.050

(0.021) (0.021)
10 years F 0.167

(0.019)
G 0.044

(0.021)
15 years F 0.184

(0.020)
G 0.040

(0.021)
20 years F 0.203

(0.021)
G 0.036

(0.021)
25 years F 0.208

(0.021)
G 0.035

(0.021)
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Table F.9: IV estimates from three-generation models. Estimates from Figure 4 (panel d)
in bold.

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.148 0.144 0.132 0.127 0.110 0.144 0.119

(0.023) (0.024) (0.021) (0.020) (0.018) (0.023) (0.018)
G 0.051 0.028 0.048 0.054 0.050 0.043 0.045

(0.034) (0.027) (0.024) (0.022) (0.024) (0.021) (0.022)
2 years F 0.164 0.161 0.162 0.138 0.171 0.149 0.147

(0.027) (0.026) (0.025) (0.024) (0.028) (0.024) (0.022)
G 0.025 0.046 0.064 0.054 0.045 0.050 0.039

(0.034) (0.029) (0.029) (0.030) (0.024) (0.026) (0.028)
3 years F 0.172 0.190 0.166 0.206 0.160 0.174 0.192

(0.028) (0.031) (0.029) (0.034) (0.026) (0.026) (0.031)
G 0.044 0.064 0.055 0.045 0.056 0.045 0.048

(0.036) (0.032) (0.037) (0.030) (0.031) (0.032) (0.032)
4 years F 0.197 0.183 0.243 0.178 0.181 0.230 0.151

(0.032) (0.033) (0.039) (0.029) (0.027) (0.038) (0.025)
G 0.065 0.053 0.032 0.061 0.052 0.051 0.054

(0.039) (0.039) (0.038) (0.036) (0.038) (0.033) (0.035)
5 years F 0.193 0.255 0.213 0.198 0.236 0.176 0.192

(0.034) (0.041) (0.034) (0.031) (0.038) (0.031) (0.026)
G 0.053 0.036 0.051 0.054 0.048 0.061 0.054

(0.043) (0.038) (0.042) (0.041) (0.038) (0.036) (0.041)
6 years F 0.263 0.227 0.236 0.243 0.183 0.230 0.244

(0.044) (0.036) (0.034) (0.040) (0.032) (0.033) (0.034)
G 0.036 0.050 0.046 0.049 0.060 0.053 -0.045

(0.047) (0.044) (0.048) (0.045) (0.041) (0.046) (0.039)
10 years F 0.239 0.302 0.382 0.293 0.254 0.243 0.247

(0.044) (0.043) (0.053) (0.051) (0.046) (0.044) (0.042)
G 0.069 0.044 -0.107 -0.056 0.033 -0.040 -0.085

(0.066) (0.067) (0.055) (0.058) (0.054) (0.064) (0.057)

81



Table F.10: IV estimates from three-generation models, six year time difference for fathers.
Estimates from Figure 4 (panel e) in bold.

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.205 0.210 0.207 0.203 0.206 0.206 0.204

(0.034) (0.033) (0.033) (0.034) (0.033) (0.033) (0.034)
G 0.050 0.016 0.036 0.048 0.038 0.037 0.036

(0.036) (0.028) (0.025) (0.023) (0.026) (0.022) (0.023)
2 years F 0.209 0.207 0.203 0.204 0.206 0.202 0.191

(0.034) (0.033) (0.034) (0.034) (0.033) (0.034) (0.032)
G 0.020 0.043 0.064 0.048 0.042 0.043 0.046

(0.035) (0.030) (0.030) (0.032) (0.025) (0.027) (0.030)
3 years F 0.205 0.204 0.204 0.203 0.202 0.189 0.182

(0.034) (0.034) (0.034) (0.034) (0.034) (0.033) (0.032)
G 0.050 0.069 0.058 0.053 0.050 0.049 0.052

(0.036) (0.033) (0.038) (0.031) (0.031) (0.032) (0.032)
4 years F 0.200 0.205 0.203 0.199 0.189 0.180 0.184

(0.034) (0.034) (0.034) (0.034) (0.033) (0.032) (0.032)
G 0.081 0.061 0.064 0.058 0.060 0.054 0.051

(0.039) (0.041) (0.037) (0.036) (0.039) (0.034) (0.035)
5 years F 0.202 0.204 0.200 0.186 0.181 0.182 0.189

(0.034) (0.034) (0.034) (0.033) (0.032) (0.032) (0.033)
G 0.066 0.067 0.067 0.066 0.060 0.054 0.046

(0.044) (0.039) (0.042) (0.043) (0.038) (0.037) (0.041)
6 years F 0.201 0.201 0.188 0.177 0.183 0.186 0.199

(0.034) (0.034) (0.033) (0.032) (0.032) (0.033) (0.033)
G 0.076 0.068 0.077 0.071 0.060 0.052 -0.034

(0.044) (0.043) (0.048) (0.044) (0.041) (0.046) (0.039)
10 years F 0.178 0.186 0.200 0.203 0.192 0.209 0.223

(0.033) (0.033) (0.034) (0.035) (0.034) (0.036) (0.037)
G 0.094 0.075 -0.045 -0.003 0.056 -0.035 -0.070

(0.064) (0.066) (0.051) (0.057) (0.052) (0.066) (0.057)
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Table F.11: IV estimates from three-generation models, six year time difference for grand-
fathers. Estimates from Figure 4 (panel f) in bold.

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.150 0.138 0.128 0.128 0.113 0.138 0.120

(0.023) (0.025) (0.021) (0.021) (0.018) (0.024) (0.019)
G 0.063 0.067 0.069 0.065 0.072 0.073 0.070

(0.039) (0.039) (0.040) (0.039) (0.040) (0.039) (0.040)
2 years F 0.160 0.154 0.166 0.145 0.162 0.147 0.154

(0.028) (0.026) (0.026) (0.023) (0.028) (0.024) (0.023)
G 0.061 0.064 0.062 0.061 0.063 0.071 0.063

(0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040)
3 years F 0.168 0.190 0.174 0.199 0.156 0.182 0.182

(0.028) (0.031) (0.028) (0.034) (0.026) (0.026) (0.031)
G 0.059 0.057 0.060 0.049 0.064 0.065 0.062

(0.040) (0.040) (0.040) (0.040) (0.040) (0.040) (0.040)
4 years F 0.202 0.192 0.233 0.179 0.191 0.220 0.150

(0.034) (0.032) (0.039) (0.029) (0.028) (0.037) (0.025)
G 0.053 0.057 0.049 0.053 0.056 0.064 0.063

(0.041) (0.040) (0.040) (0.040) (0.040) (0.041) (0.040)
5 years F 0.202 0.248 0.210 0.218 0.226 0.177 0.196

(0.033) (0.042) (0.034) (0.031) (0.037) (0.031) (0.027)
G 0.053 0.046 0.053 0.043 0.054 0.068 0.051

(0.041) (0.040) (0.041) (0.040) (0.041) (0.040) (0.039)
6 years F 0.254 0.221 0.251 0.237 0.183 0.232 0.224

(0.043) (0.036) (0.035) (0.038) (0.032) (0.033) (0.032)
G 0.042 0.051 0.044 0.043 0.060 0.056 0.034

(0.041) (0.041) (0.041) (0.041) (0.041) (0.040) (0.040)
10 years F 0.244 0.309 0.347 0.274 0.234 0.232 0.208

(0.043) (0.042) (0.050) (0.050) (0.043) (0.042) (0.038)
G 0.044 0.035 0.013 0.023 0.046 0.052 0.050

(0.042) (0.040) (0.042) (0.042) (0.041) (0.042) (0.041)
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Table F.12: “Reverse IV” estimates from three-generation models.

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.185 0.157 0.143 0.114 0.124 0.104 0.116

(0.027) (0.025) (0.023) (0.018) (0.019) (0.018) (0.017)
G 0.053 0.053 0.025 0.044 0.058 0.044 0.050

(0.025) (0.032) (0.024) (0.020) (0.023) (0.022) (0.020)
2 years F 0.222 0.189 0.159 0.140 0.137 0.129 0.135

(0.032) (0.030) (0.025) (0.022) (0.021) (0.021) (0.021)
G 0.061 0.049 0.025 0.051 0.056 0.050 0.042

(0.030) (0.034) (0.027) (0.026) (0.024) (0.027) (0.024)
3 years F 0.256 0.204 0.180 0.149 0.155 0.144 0.154

(0.037) (0.032) (0.030) (0.024) (0.025) (0.022) (0.024)
G 0.043 0.046 0.031 0.044 0.061 0.037 0.038

(0.032) (0.034) (0.032) (0.027) (0.030) (0.028) (0.027)
4 years F 0.264 0.218 0.188 0.156 0.165 0.157 0.159

(0.039) (0.035) (0.031) (0.026) (0.026) (0.024) (0.026)
G 0.045 0.051 0.023 0.049 0.065 0.033 0.047

(0.032) (0.039) (0.033) (0.033) (0.032) (0.031) (0.027)
5 years F 0.290 0.216 0.195 0.164 0.170 0.152 0.154

(0.043) (0.035) (0.033) (0.026) (0.026) (0.025) (0.025)
G 0.045 0.049 0.027 0.046 0.072 0.042 0.042

(0.034) (0.040) (0.037) (0.033) (0.033) (0.031) (0.028)
6 years F 0.283 0.222 0.203 0.152 0.154 0.154 0.160

(0.042) (0.036) (0.033) (0.024) (0.026) (0.025) (0.027)
G 0.038 0.060 0.018 0.070 0.082 0.023 0.027

(0.036) (0.045) (0.038) (0.035) (0.032) (0.033) (0.028)
10 years F 0.283 0.227 0.206 0.158 0.165 0.145 0.149

(0.048) (0.038) (0.036) (0.031) (0.034) (0.030) (0.027)
G 0.050 0.039 -0.011 0.049 0.086 0.038 0.032

(0.046) (0.053) (0.039) (0.037) (0.035) (0.038) (0.030)
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Table F.13: “Reverse IV” estimates from three-generation models, six year time difference
for fathers.

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.164 0.164 0.168 0.166 0.164 0.166 0.165

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.027)
G 0.060 0.053 0.024 0.033 0.057 0.033 0.042

(0.027) (0.034) (0.025) (0.022) (0.024) (0.023) (0.021)
2 years F 0.161 0.163 0.167 0.166 0.162 0.166 0.168

(0.027) (0.027) (0.027) (0.027) (0.027) (0.027) (0.028)
G 0.070 0.057 0.028 0.041 0.058 0.039 0.044

(0.032) (0.037) (0.028) (0.028) (0.025) (0.028) (0.024)
3 years F 0.160 0.162 0.167 0.165 0.163 0.169 0.168

(0.027) (0.027) (0.027) (0.027) (0.027) (0.028) (0.027)
G 0.071 0.058 0.032 0.043 0.062 0.031 0.035

(0.032) (0.037) (0.033) (0.029) (0.030) (0.029) (0.028)
4 years F 0.160 0.163 0.166 0.165 0.165 0.170 0.159

(0.027) (0.027) (0.027) (0.028) (0.028) (0.027) (0.026)
G 0.073 0.065 0.033 0.041 0.066 0.025 0.047

(0.033) (0.042) (0.034) (0.033) (0.033) (0.031) (0.028)
5 years F 0.161 0.161 0.166 0.167 0.164 0.159 0.160

(0.027) (0.027) (0.028) (0.028) (0.027) (0.026) (0.027)
G 0.075 0.067 0.033 0.052 0.072 0.040 0.049

(0.034) (0.043) (0.036) (0.034) (0.033) (0.031) (0.029)
6 years F 0.159 0.163 0.170 0.165 0.154 0.164 0.163

(0.028) (0.028) (0.028) (0.028) (0.026) (0.027) (0.028)
G 0.081 0.061 0.028 0.063 0.082 0.027 0.033

(0.037) (0.045) (0.038) (0.036) (0.032) (0.034) (0.028)
10 years F 0.153 0.158 0.166 0.162 0.144 0.151 0.152

(0.027) (0.028) (0.028) (0.028) (0.028) (0.029) (0.028)
G 0.092 0.064 0.010 0.050 0.088 0.044 0.037

(0.043) (0.054) (0.036) (0.036) (0.034) (0.039) (0.029)
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Table F.14: “Reverse IV” estimates from three-generation models, six year time difference
for grandfathers.

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.187 0.158 0.140 0.108 0.121 0.106 0.116

(0.028) (0.026) (0.024) (0.019) (0.020) (0.017) (0.018)
G 0.069 0.073 0.077 0.085 0.083 0.085 0.087

(0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.032)
2 years F 0.232 0.193 0.155 0.132 0.133 0.132 0.127

(0.034) (0.030) (0.026) (0.022) (0.021) (0.021) (0.021)
G 0.057 0.066 0.075 0.081 0.079 0.083 0.086

(0.032) (0.032) (0.031) (0.032) (0.031) (0.032) (0.032)
3 years F 0.265 0.205 0.175 0.138 0.151 0.141 0.142

(0.039) (0.033) (0.030) (0.023) (0.024) (0.022) (0.023)
G 0.050 0.064 0.072 0.078 0.079 0.083 0.087

(0.032) (0.031) (0.031) (0.032) (0.032) (0.032) (0.032)
4 years F 0.273 0.223 0.179 0.143 0.159 0.147 0.155

(0.041) (0.036) (0.030) (0.025) (0.025) (0.023) (0.026)
G 0.050 0.062 0.070 0.081 0.080 0.086 0.082

(0.031) (0.032) (0.031) (0.032) (0.032) (0.032) (0.032)
5 years F 0.294 0.218 0.188 0.149 0.158 0.148 0.155

(0.044) (0.034) (0.032) (0.025) (0.025) (0.024) (0.026)
G 0.048 0.061 0.071 0.082 0.083 0.083 0.066

(0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032)
6 years F 0.282 0.226 0.189 0.137 0.154 0.149 0.153

(0.041) (0.036) (0.032) (0.023) (0.026) (0.024) (0.027)
G 0.048 0.063 0.074 0.087 0.082 0.067 0.068

(0.032) (0.032) (0.032) (0.032) (0.032) (0.031) (0.032)
10 years F 0.281 0.235 0.189 0.150 0.173 0.156 0.145

(0.047) (0.038) (0.034) (0.030) (0.032) (0.028) (0.026)
G 0.057 0.048 0.060 0.077 0.078 0.072 0.072

(0.033) (0.032) (0.032) (0.033) (0.032) (0.033) (0.034)
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Figure E.9: OLS and IV estimates from two-generation regressions. Men and women in final
generation.
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Note: This figure shows the OLS and IV coefficient estimates and 95% confidence intervals from offspring-
father regressions and offspring-grandfather regressions. For OLS, the x-axis indexes the number of years
used in the average income measure for the oldest generation in each regression. For IV, this is instead the
number of years between the instrument income and endogenous income (measured at age 43).
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F.2 Tables for sample of men and women
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Table F.15: OLS estimates from two-generation models. Note: 10-year averages start at age
38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages
start at age 31.

(a) Sons/daughters and fathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years 0.126 0.100 0.094 0.086 0.098 0.080 0.084

(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)
2 years 0.130 0.113 0.105 0.105 0.102 0.094

(0.013) (0.012) (0.011) (0.011) (0.011) (0.011)
3 years 0.134 0.120 0.117 0.110 0.109

(0.013) (0.012) (0.012) (0.011) (0.011)
4 years 0.137 0.128 0.120 0.116

(0.013) (0.012) (0.012) (0.012)
5 years 0.143 0.130 0.125

(0.013) (0.012) (0.012)
6 years 0.144 0.134

(0.013) (0.012)
10 years 0.155

(0.013)
15 years 0.169

(0.014)
20 years 0.181

(0.014)
25 years 0.188

(0.014)
(b) Sons/daughters and grandfathers

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years 0.056 0.053 0.043 0.049 0.044 0.048 0.040

(0.017) (0.015) (0.014) (0.012) (0.012) (0.012) (0.010)
2 years 0.065 0.057 0.054 0.054 0.055 0.052

(0.016) (0.015) (0.014) (0.013) (0.013) (0.011)
3 years 0.065 0.062 0.058 0.061 0.058

(0.016) (0.015) (0.014) (0.013) (0.012)
4 years 0.069 0.064 0.063 0.063

(0.016) (0.015) (0.014) (0.013)
5 years 0.070 0.068 0.065

(0.015) (0.015) (0.014)
6 years 0.073 0.070

(0.015) (0.014)
10 years 0.073

(0.015)
15 years 0.082

(0.016)
20 years 0.081

(0.016)
25 years 0.074

(0.015)
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Table F.16: IV estimates from two-generation models. Note: 10-year averages start at age
38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages
start at age 31.

(a) Sons/daughters and fathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years 0.137 0.130 0.119 0.131 0.111 0.121 0.106

(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)
2 years 0.153 0.142 0.161 0.137 0.152 0.129 0.138

(0.017) (0.017) (0.018) (0.017) (0.019) (0.017) (0.017)
3 years 0.158 0.180 0.153 0.176 0.143 0.161 0.157

(0.018) (0.021) (0.019) (0.022) (0.019) (0.019) (0.020)
4 years 0.196 0.165 0.193 0.155 0.174 0.183 0.156

(0.022) (0.021) (0.024) (0.021) (0.021) (0.024) (0.019)
5 years 0.181 0.202 0.170 0.189 0.195 0.181 0.186

(0.022) (0.024) (0.022) (0.023) (0.025) (0.022) (0.019)
6 years 0.218 0.181 0.209 0.198 0.193 0.212 0.196

(0.027) (0.024) (0.025) (0.025) (0.023) (0.023) (0.023)
10 years 0.236 0.267 0.276 0.226 0.248 0.239 0.197

(0.029) (0.027) (0.031) (0.031) (0.030) (0.031) (0.024)
(b) Sons/daughters and grandfathers

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years 0.083 0.060 0.076 0.064 0.073 0.066 0.047

(0.024) (0.019) (0.018) (0.016) (0.017) (0.016) (0.015)
2 years 0.072 0.087 0.081 0.087 0.080 0.058 0.063

(0.023) (0.020) (0.020) (0.021) (0.019) (0.018) (0.019)
3 years 0.101 0.087 0.102 0.094 0.069 0.071 0.098

(0.025) (0.022) (0.024) (0.021) (0.021) (0.022) (0.026)
4 years 0.100 0.108 0.110 0.076 0.082 0.104 0.096

(0.026) (0.025) (0.025) (0.023) (0.025) (0.027) (0.028)
5 years 0.121 0.115 0.090 0.089 0.117 0.102 0.109

(0.028) (0.026) (0.028) (0.026) (0.031) (0.029) (0.031)
6 years 0.133 0.088 0.106 0.132 0.116 0.122 0.088

(0.030) (0.027) (0.032) (0.034) (0.033) (0.034) (0.037)
10 years 0.171 0.174 0.121 0.110 0.148 0.084 0.035

(0.048) (0.049) (0.051) (0.048) (0.047) (0.041) (0.040)
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Table F.17: OLS estimates from three-generation models. Note: 10-year averages start
at age 38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year
averages start at age 31. Men and women in final generation

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years F 0.123 0.097 0.092 0.083 0.095 0.077 0.081

(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)
G 0.039 0.040 0.030 0.039 0.034 0.041 0.032

(0.016) (0.015) (0.014) (0.012) (0.011) (0.011) (0.009)
2 years F 0.126 0.110 0.102 0.101 0.098 0.091

(0.013) (0.012) (0.012) (0.011) (0.011) (0.011)
G 0.045 0.040 0.039 0.041 0.043 0.042

(0.016) (0.015) (0.014) (0.012) (0.012) (0.011)
3 years F 0.130 0.115 0.113 0.105 0.105

(0.013) (0.012) (0.012) (0.011) (0.011)
G 0.043 0.043 0.040 0.046 0.044

(0.016) (0.015) (0.014) (0.013) (0.012)
4 years F 0.133 0.123 0.115 0.111

(0.013) (0.012) (0.012) (0.012)
G 0.045 0.044 0.045 0.047

(0.016) (0.015) (0.014) (0.013)
5 years F 0.138 0.125 0.120

(0.013) (0.012) (0.012)
G 0.045 0.047 0.046

(0.015) (0.015) (0.014)
6 years F 0.139 0.129

(0.013) (0.012)
G 0.048 0.048

(0.015) (0.014)
10 years F 0.149

(0.013)
G 0.044

(0.015)
15 years F 0.162

(0.014)
G 0.049

(0.016)
20 years F 0.174

(0.014)
G 0.045

(0.016)
25 years F 0.181

(0.015)
G 0.038

(0.015)
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Table F.18: OLS estimates from three-generation models, long-term average for fathers.
Note: 10-year averages start at age 38; 15-year averages start at age 36; 20-year averages
start at age 33; and 25-year averages start at age 31. Men and women in final generation

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years F 0.151 0.151 0.153 0.151 0.152 0.151 0.151

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
G 0.034 0.033 0.021 0.029 0.028 0.033 0.026

(0.016) (0.015) (0.013) (0.012) (0.011) (0.011) (0.009)
2 years F 0.150 0.151 0.151 0.151 0.151 0.150

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
G 0.040 0.032 0.030 0.033 0.036 0.034

(0.016) (0.015) (0.014) (0.012) (0.012) (0.011)
3 years F 0.150 0.150 0.151 0.150 0.150

(0.013) (0.013) (0.013) (0.013) (0.013)
G 0.038 0.036 0.034 0.039 0.038

(0.016) (0.015) (0.014) (0.013) (0.012)
4 years F 0.150 0.150 0.150 0.150

(0.013) (0.013) (0.013) (0.013)
G 0.041 0.038 0.039 0.040

(0.016) (0.015) (0.014) (0.013)
5 years F 0.150 0.150 0.150

(0.013) (0.013) (0.013)
G 0.042 0.042 0.040

(0.015) (0.015) (0.014)
6 years F 0.150 0.150

(0.013) (0.013)
G 0.045 0.043

(0.015) (0.014)
10 years F 0.149

(0.013)
G 0.044

(0.015)
15 years F 0.148

(0.013)
G 0.052

(0.016)
20 years F 0.148

(0.013)
G 0.052

(0.016)
25 years F 0.149

(0.013)
G 0.046

(0.015)
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Table F.19: OLS estimates from three-generation models, long-term average for grandfathers.
Note: 10-year averages start at age 38; 15-year averages start at age 36; 20-year averages
start at age 33; and 25-year averages start at age 31. Men and women in final generation

Income averaged Age starting from...
over... 39 40 41 42 43 44 45
1 years F 0.122 0.096 0.090 0.082 0.093 0.075 0.079

(0.013) (0.012) (0.011) (0.011) (0.011) (0.010) (0.011)
G 0.050 0.055 0.056 0.059 0.056 0.060 0.058

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
2 years F 0.125 0.108 0.100 0.100 0.097 0.089

(0.013) (0.012) (0.011) (0.011) (0.011) (0.011)
G 0.050 0.053 0.055 0.055 0.055 0.056

(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
3 years F 0.129 0.114 0.111 0.104 0.104

(0.013) (0.012) (0.012) (0.012) (0.011)
G 0.049 0.052 0.052 0.054 0.054

(0.015) (0.015) (0.015) (0.015) (0.015)
4 years F 0.132 0.123 0.115 0.111

(0.013) (0.012) (0.012) (0.012)
G 0.049 0.050 0.052 0.052

(0.015) (0.015) (0.015) (0.015)
5 years F 0.138 0.125 0.120

(0.013) (0.012) (0.012)
G 0.047 0.050 0.051

(0.015) (0.015) (0.015)
6 years F 0.139 0.129

(0.013) (0.013)
G 0.047 0.049

(0.015) (0.015)
10 years F 0.149

(0.013)
G 0.044

(0.015)
15 years F 0.163

(0.014)
G 0.041

(0.015)
20 years F 0.175

(0.014)
G 0.039

(0.015)
25 years F 0.182

(0.015)
G 0.037

(0.015)
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Table F.20: IV estimates from three-generation models. Note: 10-year averages start at age
38; 15-year averages start at age 36; 20-year averages start at age 33; and 25-year averages
start at age 31. Men and women in final generation

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.132 0.127 0.113 0.126 0.105 0.117 0.101

(0.015) (0.016) (0.014) (0.015) (0.014) (0.016) (0.014)
G 0.057 0.036 0.054 0.045 0.057 0.049 0.034

(0.024) (0.019) (0.018) (0.016) (0.017) (0.016) (0.015)
2 years F 0.150 0.135 0.154 0.128 0.146 0.122 0.124

(0.018) (0.017) (0.019) (0.017) (0.019) (0.018) (0.017)
G 0.037 0.057 0.048 0.064 0.053 0.040 0.037

(0.023) (0.021) (0.021) (0.021) (0.019) (0.019) (0.019)
3 years F 0.150 0.172 0.144 0.167 0.135 0.144 0.149

(0.019) (0.021) (0.020) (0.023) (0.019) (0.020) (0.022)
G 0.059 0.056 0.070 0.058 0.043 0.041 0.061

(0.025) (0.022) (0.024) (0.022) (0.022) (0.021) (0.023)
4 years F 0.188 0.154 0.184 0.145 0.156 0.171 0.138

(0.023) (0.021) (0.025) (0.022) (0.021) (0.025) (0.019)
G 0.056 0.074 0.056 0.048 0.045 0.065 0.063

(0.027) (0.026) (0.026) (0.025) (0.025) (0.025) (0.027)
5 years F 0.169 0.192 0.160 0.167 0.184 0.157 0.174

(0.023) (0.025) (0.024) (0.024) (0.026) (0.022) (0.020)
G 0.078 0.061 0.045 0.051 0.064 0.068 0.069

(0.029) (0.028) (0.029) (0.027) (0.028) (0.028) (0.030)
6 years F 0.206 0.171 0.186 0.184 0.168 0.198 0.186

(0.029) (0.025) (0.026) (0.027) (0.023) (0.024) (0.025)
G 0.070 0.044 0.049 0.076 0.070 0.071 0.038

(0.032) (0.030) (0.032) (0.031) (0.032) (0.034) (0.040)
10 years F 0.201 0.250 0.261 0.217 0.246 0.226 0.202

(0.030) (0.029) (0.035) (0.034) (0.034) (0.033) (0.028)
G 0.094 0.084 0.028 0.007 0.069 0.018 -0.027

(0.049) (0.049) (0.056) (0.045) (0.046) (0.046) (0.045)
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Table F.21: IV estimates from three-generation models, long-term average for fathers. Note:
10-year averages start at age 38; 15-year averages start at age 36; 20-year averages start at
age 33; and 25-year averages start at age 31. Men and women in final generation

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.187 0.191 0.188 0.187 0.188 0.188 0.184

(0.024) (0.024) (0.023) (0.024) (0.023) (0.024) (0.024)
G 0.044 0.021 0.041 0.039 0.045 0.037 0.022

(0.025) (0.020) (0.018) (0.017) (0.018) (0.016) (0.015)
2 years F 0.190 0.187 0.187 0.184 0.188 0.183 0.173

(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024)
G 0.025 0.048 0.048 0.055 0.045 0.027 0.036

(0.024) (0.021) (0.021) (0.022) (0.020) (0.019) (0.019)
3 years F 0.185 0.187 0.185 0.184 0.183 0.173 0.164

(0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.023)
G 0.056 0.053 0.064 0.055 0.032 0.039 0.057

(0.025) (0.023) (0.025) (0.023) (0.022) (0.022) (0.023)
4 years F 0.185 0.185 0.185 0.181 0.173 0.164 0.168

(0.024) (0.024) (0.024) (0.024) (0.024) (0.023) (0.023)
G 0.061 0.069 0.063 0.036 0.046 0.060 0.058

(0.027) (0.027) (0.027) (0.025) (0.025) (0.025) (0.027)
5 years F 0.183 0.185 0.182 0.170 0.164 0.167 0.172

(0.024) (0.024) (0.024) (0.024) (0.023) (0.023) (0.024)
G 0.077 0.068 0.041 0.051 0.067 0.062 0.062

(0.030) (0.029) (0.029) (0.028) (0.028) (0.028) (0.031)
6 years F 0.183 0.182 0.171 0.160 0.168 0.170 0.171

(0.024) (0.024) (0.024) (0.024) (0.023) (0.024) (0.025)
G 0.077 0.042 0.059 0.078 0.070 0.069 0.045

(0.032) (0.029) (0.032) (0.031) (0.032) (0.035) (0.039)
10 years F 0.162 0.169 0.169 0.178 0.169 0.186 0.194

(0.024) (0.025) (0.025) (0.025) (0.024) (0.026) (0.027)
G 0.105 0.101 0.063 0.031 0.089 0.025 -0.018

(0.048) (0.050) (0.055) (0.044) (0.044) (0.046) (0.044)
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Table F.22: IV estimates from three-generation models, long-term average for grandfathers.
Note: 10-year averages start at age 38; 15-year averages start at age 36; 20-year averages
start at age 33; and 25-year averages start at age 31. Men and women in final generation

Time difference Age starting from...
obs. - instr. 39 40 41 42 43 44 45
1 years F 0.126 0.121 0.109 0.124 0.103 0.109 0.097

(0.015) (0.017) (0.015) (0.016) (0.014) (0.016) (0.015)
G 0.089 0.090 0.092 0.085 0.092 0.095 0.093

(0.032) (0.033) (0.033) (0.033) (0.033) (0.033) (0.033)
2 years F 0.143 0.129 0.154 0.129 0.135 0.117 0.135

(0.019) (0.017) (0.020) (0.017) (0.019) (0.018) (0.018)
G 0.085 0.089 0.082 0.084 0.085 0.093 0.078

(0.033) (0.033) (0.033) (0.033) (0.033) (0.033) (0.032)
3 years F 0.145 0.170 0.145 0.159 0.128 0.156 0.146

(0.020) (0.022) (0.020) (0.023) (0.019) (0.020) (0.022)
G 0.085 0.080 0.084 0.077 0.085 0.078 0.077

(0.033) (0.032) (0.033) (0.033) (0.033) (0.032) (0.032)
4 years F 0.190 0.156 0.176 0.142 0.167 0.169 0.138

(0.024) (0.022) (0.025) (0.022) (0.022) (0.025) (0.019)
G 0.075 0.083 0.077 0.080 0.070 0.078 0.076

(0.033) (0.033) (0.033) (0.033) (0.032) (0.032) (0.032)
5 years F 0.172 0.185 0.158 0.187 0.179 0.158 0.173

(0.024) (0.026) (0.024) (0.024) (0.026) (0.022) (0.020)
G 0.079 0.077 0.081 0.062 0.070 0.078 0.067

(0.033) (0.033) (0.033) (0.032) (0.033) (0.032) (0.032)
6 years F 0.198 0.167 0.205 0.186 0.168 0.194 0.185

(0.028) (0.025) (0.026) (0.027) (0.023) (0.023) (0.024)
G 0.073 0.079 0.061 0.063 0.070 0.069 0.059

(0.033) (0.033) (0.032) (0.033) (0.032) (0.032) (0.032)
10 years F 0.208 0.252 0.266 0.222 0.235 0.219 0.184

(0.029) (0.029) (0.034) (0.032) (0.032) (0.032) (0.026)
G 0.063 0.054 0.043 0.046 0.054 0.064 0.076

(0.032) (0.032) (0.033) (0.033) (0.033) (0.033) (0.035)
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