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Abstract

This paper presents a new method for calculating Gini coefficients from

tabulations of the mean income of social classes. Income distribution data

from before the Industrial Revolution usually come in the form of such

tabulations, called social tables. Inequality indices generated from social

tables are frequently calculated without adjusting for within-group income

dispersion, leading to a systematic downward bias in the reporting of pre-

industrial inequality.

The correction method presented in this paper is applied to an existing

collection of twenty-five social tables, from Rome in AD 1 to India in 1947.

The corrections, using a variety of assumptions on within-group dispersion,

lead to substantial increases in the Gini coefficients.
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1 Introduction

Not much is known about inequality in the very long run. The lack of data has

been addressed by Milanovic et al. (2011), who collect a large set of social tables.

The social tables give data on the size and average income of social classes in many

pre-industrial societies, with the catch that the income distribution within each

class is unknown. This paper shows that common approaches to dealing with this

problem do not take sufficient account of within-group inequality, which might lead

to downward biased Gini coefficient estimates. For this reason, a new approach

is developed in Section 2. In Section 3, this approach is applied to the data of

Milanovic et al., leading to a large upward revision of the estimates of inequality.

1.1 Inequality in the very long run

The seminal contribution on the long-run evolution of inequality is Kuznets (1955).

Using a few observations from the United States, England and Germany, Kuznets

argues that inequality goes up with the industrial revolution and then decreases

with modernization. While Kuznets treats the Industrial Revolution as a rather

specific process (he dates the possible “widening phase” in England as going from

1780 to 1850, and postulates even shorter periods for the other countries), more

recent views on industrialization stress the changes as being more gradual.

Kuznets based his conclusions on a very small data set. Over the years, more

data points have become available. For example, Van Zanden (1995) reports Gini

coefficients for many European cities before from the 1500s onward, Lindert (2000)

analyze inequality in Britain and the United States after 1700, and Hoffman et al.

(2002) report Gini coefficients for several European countries. An early meta-

study is that by Bourguignon & Morrisson (2002), who combine inequality data

for various countries to construct an estimate of the world income inequality from

1820 onwards.

The most comprehensive analysis of pre-industrial inequality so far is given by

Milanovic et al. (2011). The authors collect a comprehensive set of social tables

- listing social groups, their sizes and incomes for 24 country-time points. An

example of a social table is given in Table 1. It lists the social classes in Byzantium,
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Social group Share of pop. Per capita in-
come (nomisma
per year)

Income in terms
of per capita
mean

Tenants 0.37 3.5 0.56
Urban “marginals” 0.02 3.51 0.56
Farmers 0.52 3.8 0.61
Workers 0.03 6 0.97
Army 0.01 6.5 1.05
Traders, skilled craftsmen 0.035 18 2.90
Large landowners 0.01 25 4.02
Nobility 0.005 350 56.31

Table 1: Example of social table: Byzantium, ca year 1000. Source: Milanovic
et al. (2007), based on Milanovic (2006)

ca year 1000. The data set used in this paper consists of 24 such social tables,

with a varying number of groups and class definitions.1 Though far from being a

balanced panel (only a few countries have observations for more than one period),

this is the first comprehensive cross-region data series on pre-industrial inequality,

as opposed to the more country- or region-specific discussions of the other studies.

1.2 Interpolating inequality: Limitations of existing ap-

proaches

Common for all elaborations on pre-industrial inequality is the need for some

type of interpolation. Often a combination of techniques is used, as the data

available can be of many types. For example, Lindert (2000) uses a combination

of social tables, factor prices, wage data, and land holdings, as well as more detailed

data on wealth and income for the richer parts of the population. In most cases,

information on the distribution among the poor is particularly hard to find.

For the social tables collected by Milanovic et al. (2011), we have the advantage

1Milanovic et al. have a total of 28 observations. For two of these (Holland 1561 and Japan
1886) they do not appear to have access to the underlying data. For another two (Tuscany
1427 and Bihar 1807) the data is not available in a format based on social groups. For the
remaining 24 observations, based on a wide range of studies described in their paper, I thank
Branko Milanovic for supplying the dataset; most of the observations are also available online at
http://gpih.ucdavis.edu/. The working paper version of their paper (Milanovic et al., 2007)
has a fuller exposition of the data and methodology.
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of a comprehensive table for the entire population.2 For each social class, we

have an estimate of mean income of the group, as well as the relative size of the

group. The distribution within each group, however, is not known. For this reason,

analyzing inequality using social tables data requires additional assumptions on

the characteristics of the social groups.

A natural starting point is to consider a distribution where the entire group is

concentrated at its mean income. Taking the “farmers” in Table 1 as an example,

this would mean that all farmers had an income of 3.8 nomisma per year. This

assumption makes it easy to calculate an inequality measure such as the Gini

coefficient. Milanovic et al. (2011) describe this as the lower bound of the Gini

coefficient, and denote it as “Gini1”. In the following, this will be referred to as

a “point distribution”, as the population is concentrated at a finite number of

points.3

Going one step further, we can think of a distribution where all the members

of group i are poorer than all members of group i+ 1; in the terms of Table 1, all

“tenants” are poorer than the poorest farmer. This will be referred to as a popu-

lation being perfectly sorted by groups; in other words, there is no overlap between

the population ranges. The highest inequality consistent with this assumption is

found for a distribution with half of the individuals in each group having income

at the lower border, and the other half at the upper border. For group borders at

midpoints between group means, Milanovic et al. (2011) denote this as “Gini2”,

but alternatively we could also conceive a situation where we set the group borders

so as to maximize the inequality consistent with the assumption of perfect sorting.

For most social table distributions, the assumption of perfect sorting greatly

limits the possible Gini coefficients. An illustration of this is shown in Figure 1,

which shows the Lorenz curve for a population of four groups. The Lorenz curve

plots cumulative population against cumulative income, and the area between

the Lorenz curve and the 45-degree line is equal to the Gini coefficient of the

population. When groups are perfectly sorted, the points (0, 0), (P1, Z1), ... are

2There is of course substantial uncertainty inherent in compiling the tables. This goes for
any pre-industrial data series, including wage and other price series, and will not be discussed
further here.

3Analytical expressions will be detailed below; the “point distribution” Gini is equal to the
between-group Gini, given in Equation (7).

4



ζ1

ζ2

ζ3

ζ4

Z1

Z2

Z3

Z4

P1 P2 P3 P4ψ1 ψ2 ψ3

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........


...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
...........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

..

..

..

..

..

..

..

..

..

......................................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.....................................................................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..
....................................................................................................

.............................................................................................................................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..........................................................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

....................................................................................

.............................................................................................................................

.............
.............

.........
.............
..........
.........
.............
..........
.........
.............
..........
.........
.............
..........
.........
.............
..........
.........
.............
..........
.........
.............
..........
.......
...........
...........
.......
.......
...........
..........
.......
...........
...........
.......
.......
...........
..........
......
.........
.........
........
......
.........
.........
........
......
.........
.........
........
......
.........
.........
........
......
.........
.........
........
......
.........
.........
........
......
.........
.........
........
......
.........
...

..
...
..
....

..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..

Figure 1: Lorenz curve and Gini coefficients for two restrictive assumptions

known; (Pi, Zi) refers to the cumulative population and income of all groups up to

group i. If there is no dispersion within groups, the Lorenz curve is given by the

solid line, and the minimum Gini is the shaded area in the figure.

Now consider a set of within-group dispersions that preserves the perfect or-

dering of incomes by groups. The points (Pi, Zi) still have to be on the Lorenz

curve. Moreover, by the definition of the Lorenz curve, it must always be weakly

convex — the Lorenz curve plots population sorted by income, and the slope of

the curve corresponds to the income of an individual at that point. It follows that

the most outward-lying Lorenz curve is a series of straight lines going through the

points (Pi, Zi) with kinks somewhere between these points; an example of such a

line is the dotted line in Figure 1. Correspondingly, the Gini coefficient can only

go up by the area between the solid and dotted line.4

The max-inequality Lorenz reflects a distribution where the population of a

group is concentrated at the two extremes of the income groups’ range; the richest

individuals in group i have the same income as the poorest in group i + 1. The

4A related analytical proof for the case when group interval borders are given is found in
Gastwirth (1972).

5



position of these income and population points, denoted (ψi, ζi) in the figure,

that gives the highest possible Gini is in general not easy to find in closed form.

However, as is evident from the figure, for most distributions the scope of increasing

the area between the solid and dotted lines is very limited, and becomes more so

as the number of groups goes up.

For a few “pre-industrial” societies, we do have information on inequality both

within and across groups. This does allow for some examination of whether the

restrictions described here are empirically plausible.

1.3 Overlaps between groups in pre-industrial societies

Of the 28 income distributions used by Milanovic et al., two allow for more detailed

analysis of within-group distributions.

The estimate for Tuscany, 1427 uses data from the full-count Catasto (tax

census). While the income estimates used by MLW appends wage data taken from

other sources (without within-group information), the Catasto itself has wealth

data and makes possible a full-count estimation of aggregate and decomposed

wealth Gini coefficients.

The second source is the expenditure survey of Bihar, 1807. While there is no

combined table with both social class/occupation and expenditure, expenditures

are reported separately for rural and urban locations.

A third source, not used by Milanovic et al., is a report containing income

distributions for Norway, 1868. For a set of 26 occupational groups, the number

of adult males earning above a threshold level is given, separated into five income

groups. From this data we can construct aggregate and decomposed income Gini

coefficients, contingent on earning above the threshold level. While the data only

covers the upper third of the adult-male income distribution, it still gives valuable

influence on the overlaps between groups in this income range.

The commonly used decomposition of the Gini coefficient, used, for example,

by Lambert & Aronson (1993), divides total inequality into three components.

Between-group inequality, GB, follows directly from group means and is the in-

equality that the population would have if there was no inequality within groups.

Within-group inequality, GW , is a weighted sum of the Gini coefficient each group

6



would have if it was a separate population. The remainding inequality, which is

zero if there is no overlap between groups, is often referred to as “residual inequal-

ity” and will be denoted GR. It is worth noting that the restriction of “no overlap”

not only affects GR, but also puts bounds on the within-group inequality.

Country Unit # groups G GB GW GR

Tuscany, 1427 Wealth 97 occupations 75.2 46.5 19.4 9.3
Bihar, 1807 Expenditure 2 sectors 35.3 2.1 29.2 4.1

Norway, 1868 Income (upper 1/3) 26 occupations 29.2 15.2 5.9 8.1

Table 2: Pre-industrial societies with within-group data

For the three pre-industrial societies for which we have data, the three compo-

nents of the Gini coefficient can be calculated separately, as shown in Table 2. It is

clear that between-group inequality only accounts for a small part of inequality in

these three societies. The extreme example is Bihar, where two large groups have

means that are very close, but for the two other samples there is also substantial

within-group inequality.

Even though the overlap term (GR) is moderate the restriction of “no overlap”

would lead to Gini coefficients much lower than the actual distributions. To see

this, consider the methods of Section 1.2 applied to the three data sets, as shown

in Table 3.

Country Gini with point Max Gini with “True” Gini
distribution (GB) no overlap

Tuscany, 1427 46.5 52.9 75.2
Bihar, 1807 2.1 19.6 35.3

Norway, 1868 15.2 15.4 29.2

Table 3: Inequality with and without overlap

For each country, everyone were given their group mean income and inequal-

ity was calculated. This is the first column. The second column gives the Gini

coefficient with the maximum dispersion consistent with “no overlap”. The final

column gives the Gini calculated from micro data. It is evident from the table

that the limitation of “no overlap” is severe; in all cases, the difference between

the group-calculated Ginis and the true Ginis are more than 10. This highlights

7



the importance of relaxing the no-overlap restriction when calculating inequality

from group data.

The limitation of assuming perfectly sorted groups, if this does not correspond

to known characteristics of the underlying population, is the main motivation for

imposing within-group distributions that have overlaps between the income ranges

of groups. This will be the topic of the next section.

2 Social tables and log-normal group distribu-

tions

2.1 The distribution of income within groups

To put some structure on the within-group dispersion of income, it will be as-

sumed for the remainder of this paper that income within each social class is

log-normally distributed. The log-normal distribution is commonly used to model

income inequality. For a stochastic process with a given population, where rela-

tive changes in incomes are random, the central limit theorem yields a log-normal

distribution for this population (see, for instance, Crow & Shimizu (1987, chap.

1), citing Gibrat (1930, 1931)). If group incomes are log-normally distributed, the

corresponding theoretical justification is that while the conventional stochastic

processes operate within groups, there is no mobility between groups. The differ-

ent means would be explained by a variety of different initial conditions “outside

the model”, unequal land distributions, historical conquests, discrimination or in-

stitutionalized privilages. While somewhat stylized, this is a reasonable and easily

understood assumption, in particular on historical data.5

With log-normal distributions within groups, the aggregate distribution will

not itself be log-normal. Rather, it captures the salient features of a presum-

ably stratified society; the distribution shape will reflect the group data and its

smoothness will depend on within-group dispersion. The log-normal distribution

5The pre-industrial distributions discussed in the previous section have some “bracketed”
data within each group, making formal tests of distributional shapes difficult without further
assumptions. However, some evidence points toward groupwise lognormality in these cases. See
the Online Appendix for details.
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has mass along the entire positive income range; correspondingly, there will be

overlap between groups and the Lorenz curve will pass to the right of the points

(Pi, Zi) in Figure 1.

The log-normal distribution is most conveniently expressed in terms of µ, the

mean of log income, and σ, the standard deviation of log income.Denoting the

mean income of a group as yi and the standard deviation of the income as si, the

expressions for these parameters are

µi = log(yi)−
1

2
log

(
1 +

(
si
yi

)2
)

= log(yi)−
σ2
i

2
(1)

σ2
i = log

(
1 +

(
si
yi

)2
)

(2)

The cumulative distribution function (cdf) is

FL(x;µ, σ) = Φ

(
log(x)− µ

σ

)
(3)

where Φ(·) is the standard cumulative normal distribution,

Φ(x) = 1√
2π

∫ x
−∞ exp

(
−t2
2

)
dt.

Denoting the relative population size of each group (social class) by pi and the

total number of groups by N , it follows that the cumulative income distribution

function of the population is defined by

F (x) =
N∑
i=1

[
piF

L(x;µi, σi)
]

(4)

where µi and σi are defined by (1) and (2).

2.2 Calculating Gini coefficients from group data

As demonstrated by Aitchison & Brown (1957), the Gini coefficient for the log-

normal distribution (3) is given by GL = 2Φ(σ/
√

2)−1. Using the procedure given

9



in the Appendix, we can derive the Gini coefficient of the distribution F defined by

(4). This gives a closed-form expression for the Gini coefficient that incorporates

overlaps between groups.

Proposition 1 Let a population with mean income ȳ be divided into N groups

where each group i has population share pi and a log-normal income distribution

with parameters (µi, σ
2
i ), i = 1, 2, ...N . Then the Gini coefficient is given by

G =
N∑
i=1

N∑
j=1

pipj
yi
ȳ

2Φ

µi − µj + σ2
i√

σ2
i + σ2

j

− 1

 (5)

Proof: See Appendix.6

This expression has N2 terms; two for each combination of i and j. Each of the

terms considers a separate part of the Lorenz square;7 group i’s share of income

piyi/ȳ (on the vertical axis) is multiplied with group j’s share of population pj (on

the horizontal axis). If there was no overlap, these parts would be separate rect-

angles and constitute a grid; however, in this case, the areas should be considered

as density functions over the entire square. Each of these areas are weighted by a

number between −1 and 1, depending on the corresponding values of µ and σ for

the two groups. The sum of these weighted squares is a measure of the distance

between all individuals; the Gini coefficient.

As the expression (5) has many more terms than the number of groups, and

some of the terms are negative, it is not straightforward to interpret the effect of

different parameters on the resulting Gini coefficient. For this reason, it is more

convenient to work with a re-formulated expression. First, replace the parameter

6The relationship between group mean income yi and (µi, σ
2
i ) is given in Equations (1)-

(2). Note that ȳ =
∑N

i=1 piyi. To the knowledge of this author, the result in Equation (5)
is not previously published. After the first working paper edition of this paper, Young (2011)
has independently derived a similar expression, in the context of modern (national and global)
income inequality.

7The term “Lorenz square” refers to the square on which the Lorenz curve is plotted; the
horizontal axis represent aggregate population, sorted from poorest to richest, while the vertical
axis represent cumulative aggregate income.
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µ with the group means, using (1).8 Second, add each ij term (where i < j) to

the corresponding ji term to get the preferred expression for the Gini coefficient

G =

N∑
i=1

N∑
j=i+1

pipj

yj
ȳ

2Φ

 log
(

yj

yi

)
√
σ2
i + σ2

j

+

√
σ2
i + σ2

j

2

− 1

− yi
ȳ

2Φ

 log
(

yj

yi

)
√
σ2
i + σ2

j

−

√
σ2
i + σ2

j

2

− 1


︸ ︷︷ ︸

Across-group inequality (GA = GB +GR)

+

N∑
i=1

p2i
yi
ȳ

[
2Φ

(
σi√

2

)
− 1

]
︸ ︷︷ ︸

Within-group inequality (GW )

(6)

which is decomposed into an across-group inequality term (henceforth defined

as GA = GB +GR) and a within-group inequality term.9

The first term of (6) is the sum of inequality across groups; all pairwise compar-

isons between individuals in group i and individuals in group j. We can contrast

this to the Gini coefficient for no within-group dispersion, which is the population-

weighted sum of all pairwise differences between the groups

8One could also substitute in s for σ, but this does not add clarity; as the Gini coefficient is
a relative measure, the standard deviation only enters scaled, as s/y, and this can just as well
be summarized in the σ measure.

The Gini coefficient expressed only in means and standard deviations is

G =

N∑
i=1

N∑
j=1

pipj
yi
ȳ

2Φ

 log
(

yi

yj

)
√

log
[(

1 +
s2i
y2
i

)(
1 +

s2j
y2
j

)] +

√
log
[(

1 +
s2i
y2
i

)(
1 +

s2j
y2
j

)]
2

− 1


9GB , GR andGW were defined in Section 1.3. The decomposition intoGA andGW is discussed

by Ebert (2010), who treats GA as the “between” component. The analysis here is also related
to Yitzhaki & Lerman (1991), who study the relationship between stratification and inequality.
The aggregate group data can be construed as giving stratification but not inequality, and the
Gini coefficients presented here measure stratification-induced inequality differences between
populations.
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G0 =
N∑
i=1

N∑
j=i+1

pipj

(
yj
ȳ
− yi
ȳ

)
︸ ︷︷ ︸

Between-group inequality (GB)

(7)

and see that the expressions are closely related. GA differs from GB in that

the group means are modified by a number between −1 and 1; the evaluation of

the 2Φ(·)− 1 function.

The values for y and p in a given population are known from the social tables.

The dispersion, however, is not. It is therefore of interest to know how the in-

equality of a population changes when dispersion changes - how G changes with

si, or σi. From Equation (6), increases in G can be decomposed into increases in

across-group inequality and increases in within-group inequality.

2.3 De-composing inequality effects

The across-group Gini is always increasing with group dispersion. Formally, this

effect can be evaluated by taking the derivative of the across-group Gini by the

dispersion measure of one or both groups. The derivative is always positive; an

increase in dispersion will always increase the across-group Gini coefficient.10 Be-

cause the log-normal distribution has positive mass across the entire income range,

there is always some overlap; this is why the across-group term depends on σ even

for small dispersions.

Milanovic (2002, p. 82-83) discusses the relationship between group means,

group dispersions and income overlaps. He shows that for the overlap to be small,

groups must either be very homogeneous internally (low within-group dispersion),

or their mean incomes must be very far apart. Equation (6) allows for a formal

10The derivative with respect to σ2
i + σ2

j is

∂GA

∂
√
σ2
i + σ2

j

=
yj
ȳ
φ

 log
(

yj

yi

)
√
σ2
i + σ2

j

+

√
σ2
i + σ2

j

2

+
yi
ȳ
φ

 log
(

yj

yi

)
√
σ2
i + σ2

j

−

√
σ2
i + σ2

j

2


The derivative with respect to σi or ci = si/yi can then be found by the chain rule; this will not
change the sign.
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discussion of this. Consider an increase in the dispersion of group j, and the mean

pairwise income difference between individuals in group j and (the poorer) group

i. If the groups did not overlap; there would be no change; the lower distance

resulting from a decrease in the income of the poorer individuals would be exactly

offset by the increase in the income of the richer individuals, as the mean of

group j is unchanged. With overlap, however, some of the poorest j-individuals

are moving away from the richest i-individuals; the overlap makes the effect of

increased dispersion greater. The degree of overlap is again influenced by the

distance between groups (log
(
yj
yi

)
) and the dispersion level (σ2

i +σ2
j ). This means

that lower distance between groups increases the effect on the overlap term from

increasing dispersion; groups that are close will have larger overlaps. The effect of

changing dispersion is smaller for very large or very small dispersions; this reflects

the bounding of the Gini coefficient to be between 0 and 1.

The last term in (6) is the sum of within-group Gini coefficients; a weighted

sum of the Gini coefficients for log-normal distributions as reported by Aitchison &

Brown (1957). It is straightforward to see that the within-group Gini increases with

dispersion. As within-group pairs constitute a relatively small part of all possible

pairs, the weights are low; for small groups, the squaring of the population share

means that the resulting inequality contribution is low.

Returning to the aggregate Gini coefficient, it is useful to verify that Equation

(6) takes on familiar values at the extremes of dispersion. First, consider a sit-

uation where within-group dispersion approaches zero: σi → 0; in that case, the

across-group Gini collapses to the between-group Gini (7) as both Φ functions are

evaluated at plus infinity. Similarly, we can consider a situation where dispersion

approaches infinity; in that case, as σ → ∞, the Φ evaluations on yj and yi are

evaluated at plus and minus infinity, respectively. The Gini coefficient approaches∑N
i=1

∑N
j=1 pipjyi/ȳ, which sums to 1; full inequality.

2.4 Finding within-group dispersions

From the discussion above we now know that when group distributions are log-

normal, we can calculate aggregate and composite inequality measures in closed

form, given group sizes, means and standard deviations. The standard deviations

13



are not in the social tables. Because of this, we have to make a case for the “correct”

level of within-group dispersion in each case to calculate aggregate inequality.

The following paragraphs discuss three possible ways of inferring reasonable

ranges for inequality within groups. We will describe dispersion within each group

in terms of coefficients of variation, ci = si/yi. In Section 3 below, a wide range

of dispersion parameters will be examined.

Within-group dispersion in pre-industrial societies

From the three pre-industrial distributions discussed in Section 1.3, one can cal-

culate the magnitude of dispersion directly. The means (across groups) of three

inequality coefficients are reported in Table 4: the coefficient of variation c, the

variance of log income (or wealth) σ̃2, and the within-group Gini coefficient Gi.

Population Mean c Mean σ̃2 Mean Gi

Tuscany, 1427 (Wealth) 2.12 2.03 0.64
Bihar, 1807 0.75 0.36 0.34

Norway, 1868 0.48 0.21 0.20

Table 4: Within-group inequality in pre-industrial societies

As explained above, all of these groups have some peculiarities in terms of the

data. In the case of Tuscany, the data is on wealth, not distribution. In the case

of Norway, the income data is only for the upper third of the distribution. And

for Bihar, we only have two sectors. Moreover, some of the Bihar households are

very large, which potentially leads to an underestimation of inequality as we have

no within-household distribution data.

The limitations in the Bihar and Norway data can help explain why the mea-

sured inequality levels are so much lower than in Tuscany. On the other hand, the

values for Tuscany are probably too high, as they concern wealth inequality, not

income inequality. As all these three pre-industrial distributions have some limi-

tation in terms of coverage, it will be useful to also look at other ways of inferring

information about within-group dispersion.

14



Well-apportioned groups

In addition to inference from the three pre-industrial data sets, we can extrapo-

late inequality information from the distribution of income across groups to the

distribution within groups. A possible approach is to say that groups should be

“well-apportioned”; for a group to have a separate identity when tabulating in-

comes, the differences within the group should be less than the differences across

the groups. This can be operationalized by requiring that the weighted sum of

within-group Ginis not being larger than the between-group Gini.

The maximal level of dispersion consistent with this well-apportionment as-

sumption will be denoted cw; it will differ across societies, as it is derived from

the group means and sizes. To calculate cw, insert for the definition of σ (2) and

the dispersion structure in the expression for within-group inequality in (6), and

equate the average within-group dispersion with the between-group Gini.

The standard deviation of logs becomes σw =
√

2Φ−1
(
GB+1

2

)
. Inserted in (5),

we get the expression for the upper bound on the Gini coefficient consistent with

well-apportioned groups:

G“well-apportioned” =
N∑
i=1

N∑
j=1

pipj
yi
ȳ

2Φ

Φ−1
(
GB + 1

2

)
+

log
(
yi
yj

)
2Φ−1

(
GB+1

2

)
− 1


(8)

where GB is given by Equation (7); that is, the expression depends only on

the means and group sizes in the original data. For a simple back-of-the enve-

lope calculation of inequality comparison across societies, Equation (8) is a good

candidate. The dispersion cw makes the within-group Gini for each group equal

to the between-group Gini of the population. It can be seen as an upper bound

of dispersion by making the following claim: if within-group dispersion was really

bigger than cw, the compiler of the table would not have chosen the groups in this

way, as they do not add to the “structuring” of information about the society. In

addition, this assumption allows for the coefficient of variation within groups to

vary across societies.
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Within-group dispersion in modern societies

Modern census or other survey data often include information on income, as well as

several characteristics that makes it possible to group the population into “social

classes” corresponding to the social tables. Using data from the International

Integrated Public Use Microdata Series (Minnesota Population Center, 2010), the

coefficient of variation of income can be calculated for groups based on occupation,

industry and employment class. The result of such a procedure on nine countries

is outlined in the online Appendix.11

The median within-group coefficient of variation is between 0.7 (Canada, 1981)

and 4.8 (Mexico, 2000), with most being around 1. If we pool all group definitions

and countries together, 25 per cent of c-coefficients are lower than 1 and 26 per

cent are higher than 2. There is no clear relationship between development status

and dispersion, though the groupings by “employment class” consistently yield

higher dispersions than the other two groupings.

If the dispersion of income c within a group was correlated with the level of

income, we would have to take account for this in our assumptions on dispersion.

However, this does not appear to be the case. Running the regression ci = α+βyi

for each modern sample separately, β is only significantly different from zero in a

small minority of cases. Hence, it will be assumed that coefficients of variations are

constant across groups; that standard deviations are proportional to group income.

Similar regressions on the relationship between within-group dispersion and the

number of groups on the country level finds no significant results, suggesting that

the number of groups does not drive variations in within-group inequality.12

The combination of evidence from pre-industrial and modern societies, as well

as the assumption of well-apportioned groups, guides the choice of coefficients of

variation that will be used to re-evaluate the social tables.

11The countries for which the required data was available are Brazil, Canada, Colombia, Mex-
ico, Panama, Puerto Rico, South Africa, United States and Venezuela. Observations are spaced
between 1970 and 2007.

12Details on these regressions are provided in the online Appendix.
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3 Re-evaluating pre-industrial inequality

With the methodology in place, pre-industrial inequality can be re-evaluated using

the social table data compiled by Milanovic et al.. The overall level of inequality

goes up by a large amount when within-group inequality is accounted for. In

addition, changing dispersion also affects how we rank the various societies in

terms of inequality.

Seven different sets of assumptions on within-group dispersion will be illus-

trated. The first and second set are the measures used by Milanovic et al.. Their

“Gini1” assumes no within-group inequality — this is the “point distributions” dis-

cussed above — and is equal to the between-group Gini coefficient.13 The “Gini2”

variable is the inequality associated with within-group inequality and perfect group

sorting, for given group interval borders, as described by Kakwani (1980, chap. 6).

While Gini1 corresponds to c = 0, Gini2 does not map into the methodology used

in this paper.

For the groupwise log-normal distributions, the coefficient of variation will be

assumed constant across groups.14 The values for c shown here will be 0.1, 0.5, 1

and 2, covering most of the range discussed above. There will also be an assump-

tion set with “well-apportioned” groups, where the within-group Gini coefficients

are equal to the between-group coefficients. These differ between populations,

as the estimates are calculated from group means and sizes, but are still constant

across groups within each population.15 The assumption sets used are summarized

in Table 5.

3.1 The level of inequality in pre-industrial societies

The Gini coefficients increase significantly when within-group dispersion is ac-

counted for. Figure 2 shows how the calculated Gini coefficients are sensitive to

assumptions on within-group dispersion. The Gini estimates used by Milanovic

et al. (“Gini1” and “Gini2”) span only a small range of the possible values. Even

13The between-group Gini, GB , can be calculated by Equation (7).
14Most results hold up to other linear relationships between si and yi. This is detailed in the

Online Appendix.
15See Equation (8) for the calculation of the well-apportioned groups.
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# Within-group dispersion Var. coeff Var. of log Gini within groups

c σ2 = log(1 + c2) Gi = 2Φ(σ/
√

2)− 1
1 None (MLW “Gini1”) 0 0 0
2 Perfect sorting (MLW “Gini2”) - - -
3 Very low 0.1 0.01 0.06
4 Low 0.5 0.22 0.26
5 Intermediate 1 0.69 0.44
6 High 2 1.61 0.63
7 “Well-apportioned” cw - -

Table 5: Assumptions on within-group dispersions

the low coefficient of variance assumption of c = 0.1 gives higher Gini estimates

for all but eight populations; increasing c to 0.35 leaves only Moghul India with

higher Gini2. Like other populations with few groups, Moghul India has a large

group containing the majority of the population; unlike the other populations,

however, this group is not the poorest, and the income distance to the richer and

poorer groups is relatively high. This allows for high inequality while preserving

the assumption of no overlap. In the terms of Figure 1, the data points for Moghul

India allow a large distance between the solid and dotted line, while for the other

populations, this space is very small.

From Section 2.4 above, we know that the most coherent modern-day social

groups have coefficients of income variations between .5 and 1. Using the still

low value of c = 0.5, the calculated Gini coefficients for all the pre-industrial

populations are higher than the Gini2 value. Further increasing within-group

dispersion to c = 2, all Gini coefficients are higher than 0.7; very high inequality

by any standard.

There is some change in sorting as c increases. At c = 0.5, around 7 per cent

of all pairwise comparisons of societies change; at c = 2 this number has increased

to 13 per cent. Above c = 2 the re-shuffling does not increase much more.16

For the societies with higher between-group inequality, that is, the lower half of

Figure 2, the sorting of societies is almost perfectly preserved — for example, by

all measures, England and Wales in 1759 was just a little bit more unequal than

in 1688. Hence, we can conclude that while the level of inequality is very sensitive

16For comparison, the expected change in pairwise sorting for random data sets is around 1/2
(50%).
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to assumptions on within-group dispersions, the ranking is not.

With a large within-group dispersion measure, c = 2, calculated Gini coeffi-

cients are in some cases more than twice as large as the benchmark values. If

inequality in these societies was this high, the value of the social tables data is

low, as we would expect there to be variation in dispersion between populations,

making it harder to rank the societies with respect to each other.

It could be a source of concern if the Gini coefficient of a population was highly

dependent on the number of groups in that population. On the one hand, a high

number of recorded groups could reflect a highly stratified society with correspond-

ing inequality. On the other hand, we must assume that the number of recorded

groups also reflects some pragmatism on the associated (often contemporary) re-

searcher’s part, with respect to how much data it is possible to collect. In any

case, there is not a high correlation between the number of groups and the Gini

estimates; for all estimation sets, linear OLS regression does not yield a significant

slope parameter.17

To sum up, there are two main messages from Figure 2. First, the level of pre-

industrial Gini coefficients is in general sensitive to assumptions on within-group

dispersions. Second, the ordering of societies with respect to each other experiences

some changes, but only around 10% of all compared pairs change order when the

coefficient of variation within groups goes from 0 to 1.

3.2 The contributions of subgroups to inequality

As discussed in the previous section, the increase in inequality comes both from

inequality within and across groups. Using Equation (6), we can look at the

contributions of group pairs to inequality. From each pair of groups, we get the

weighted sum of pairwise income differences between individuals of the groups. As

an example, consider again the social table for Byzantium, AD 1000, as given in

Table 1. A Gini decomposition based on group pairs, with within-group dispersion

at c = 1, is given in Table 6.

The upper panel shows the entire Gini coefficient. The diagonal is the within-

17This holds regardless of whether Brazil 1872, with 375 groups, is included in the regression.
See the Online Appendix.
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............................................
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............
..
..
...........

..

............................. ..
..
............

..

............
..
...........

GA

GWAll Gini components (GA +GW )

i = 1
j = 1 3.4 i = 2
j = 2 0.4 0.0 i = 3
j = 3 10.1 0.5 7.3 i = 4
j = 4 0.8 0.0 1.2 0.0 i = 5
j = 5 0.3 0.0 0.4 0.0 0.0 i = 6
j = 6 3.1 0.2 4.4 0.2 0.1 0.2 i = 7
j = 7 1.3 0.1 1.8 0.1 0.0 0.1 0.0 i = 8
j = 8 10.3 0.6 14.5 0.8 0.3 0.9 0.3 0.1

............................................
..
............

..

............
..
..
...........

..

............................. ..
..
............

..

............
..
...........

GA −GB

GW“Within” and “overlap” terms (GA −GB +GW )

i = 1
j = 1 3.4 i = 2
j = 2 0.4 0.0 i = 3
j = 3 9.1 0.5 7.3 i = 4
j = 4 0.4 0.0 0.6 0.0 i = 5
j = 5 0.1 0.0 0.2 0.0 0.0 i = 6
j = 6 0.1 0.0 0.2 0.0 0.0 0.2 i = 7
j = 7 0.0 0.0 0.0 0.0 0.0 0.1 0.0 i = 8
j = 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Table 6: Example of group pair contributions, Byzantium, AD 1000.
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group Gini components; these would all be zero if there was no within-group

dispersion. The other cells in the upper panel are the across-group components.

Because groups are weighted by products of group sizes and incomes, small groups

only add to inequality if differences between groups are very big. The lower row

(j = 8) gives the contributions from the “nobility” group with very high income;

because the difference from other groups is so big, interactions with this group

contribute greatly to inequality. The most sizable contributions come from the

interaction of the very small, very rich mobility group (j = 8) with the two poor,

very big tenant and farmer groups (i = 1, i = 3). The sum of all the cells in the

upper panel is the total Gini coefficient for this population, given a within-group

coefficient of variation of 1.

Most of the large effects from group income differences come from the dif-

ferences between group means, and are as such contained in the between-group

Gini (GB). The lower panel subtracts the between-group components,18 giving the

additions to inequality that arise solely from within-group dispersions.

When the between-group inequality is subtracted, nearly all contributions to

inequality from the upper groups disappear. Within-group Gini coefficients, in

particular for i = 1 and i = 3, the largest groups, contribute a total of 11 Gini

points to the total Gini. 19 In this case, however, the across-group contribution is

even more important. Inequality across farmers (group 1) and tenants (group 3) -

large groups that have means close together - is particularly evident. This combi-

nation adds 9.1 points to a total Gini coefficient of 64 — nearly half the increase

from the between-group Gini of 41. This highlights the restriction an assumption

of perfect sorting places on inequality. As the means are so close, any perfectly

sorted within-group distribution would have both these groups compressed over a

very short income range.

Table 7 shows the decomposition of the increase in inequality for all the soci-

eties. For no within-group dispersion (c = 0), by construction, the within-group

Gini is zero and the across-group component is equal to the between-group com-

ponent. As c increases, both components go up; with many groups, more of the

18GB is given in Equation (7).
19Throughout the text, Gini coefficients will be scaled to be between 0 and 100; a “Gini point”

refers to a change of 1 in this measure.
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c = 0 c = 0.5 c = cw
GA GW GA GW GA GW

Roman Empire, 14 (N = 11) 36 0 38 12 40 17
Byzantium, 1000 (N = 8) 41 0 47 7 52 10
England and Wales, 1290 (N = 7) 35 0 40 5 44 6
England and Wales, 1688 (N = 31) 45 0 50 2 58 3
Holland, 1732 (N = 46) 61 0 64 1 76 2
Moghul India, 1750 (N = 4) 39 0 39 10 41 15
England and Wales, 1759 (N = 56) 46 0 51 1 60 2
Old Castille, 1752 (N = 51) 52 0 56 1 66 3
France, 1788 (N = 9) 55 0 57 3 66 6
Nueva Espana, 1790 (N = 3) 63 0 64 6 67 14
England and Wales, 1801 (N = 33) 51 0 55 2 64 4
Netherlands, 1808 (N = 20) 56 0 59 3 68 6
Kingdom of Naples, 1811 (N = 12) 28 0 40 2 41 2
Chile, 1861 (N = 32) 64 0 67 2 78 4
Brazil, 1872 (N = 375) 40 0 46 1 53 2
Peru, 1876 (N = 9) 41 0 46 4 52 7
China, 1880 (N = 3) 24 0 24 19 24 17
Java, 1880 (N = 32) 39 0 44 4 50 5
Maghreb, 1880 (N = 8) 57 0 60 4 67 9
Kenya, 1914 (N = 13) 33 0 34 14 34 18
Java, 1924 (N = 14) 32 0 39 3 42 4
Kenya, 1927 (N = 13) 42 0 43 10 46 16
Siam, 1929 (N = 21) 48 0 52 1 62 3
British India, 1947 (N = 8) 48 0 50 4 58 7

Table 7: Gini coefficients decomposed for different levels of within-group dispersion
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increase is in across-group inequality, as more of the possible pairs of people are

in separate groups. Some populations are clear outliers. For example, the social

table for China has nearly all the population in the poorest group, and hence

the “within” term of this group accounts for nearly the entire increase in G for

high c. For Chile, the difference between group means is so big that increasing

within-group dispersion has a less pronounced effect on both components. And for

Naples, where group means are close, nearly all the increasing inequality is from

increases in the across-group component.

The contribution to inequality from the affluent groups

For the richer income groups of historical inequality data (the upper social classes),

we often have more detailed information on group structures. Hence, imposing the

log-normal distribution, with positive mass across the entire income spectrum and

a left-skewed distribution, might be harder to accept for these groups.

However, these upper groups are typically small, and it turns out that the

contribution to aggregate inequality from dispersion within these groups is also

small. As an example, consider the decomposition illustration of Table 6.

As is seen in the left column of the upper panel, the contributions to overall

Gini from the richest group (j = 8) are substantial, even though it only consists of

one per cent of the total population. However, all of this contribution comes from

the difference in group means, which is present before the within-group dispersion

is introduced. If we remove the between-group inequality, and move to the lower

panel, it is clear that the contribution of the upper group is very low. As there is

almost no overlap with the other groups, and the population of the richest group

is low, the contribution of the richest group to the increased dispersion is almost

zero.

Similar exercises can be conducted for the other social tables. Counting the

“inequality contribution” from a group as all terms in (6) that include the group,

we can check how much the richer groups contribute to overall inequality. Taking

as the threshold any groups with a mean income of more than five times the

population mean, and using the assumptions of c = 1, the result of this accounting
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exercise shows that there are no large contributions by the rich groups.20Even for

the cases where these groups make up a considerable size of the population (they

are largest in France and New Spain), the contribution from these groups only

make up a small factor of the inequality that is added by within-group dispersion.

It follows that removing the assumption of log-normal distributions within groups

for the richer groups would not significantly alter the results in this paper.

3.3 Introducing a subsistence minimum assumption

Log-normal distributions have positive mass across the entire positive income

range. Hence, by assuming such distributions within groups, we postulate that

many people are very poor. However, some positive income level needs to be ful-

filled in order to survive - the subsistence income. If we believed that everyone, at

all times, lived at or above subsistence, we would have to revise our assumptions

on within-group distributions. Inequality-limiting subsistence is one the key mes-

sages of Milanovic et al. (2011). As an example, the mean income of “Agricultural

day laborers and servants” in France 1788 was 312 PPP dollars a year. With

subsistence income at 300 dollars (as assumed in their paper), most people in that

group (covering 36 per cent of the population) must have had incomes very close

to the mean.

There is no need to assume that the subsistence border holds with absolute

certainty; indeed, there is ample historical evidence to suggest that large groups

have been living below subsistence level for long periods of time. A notable exam-

ple is given in Clark (2008, chapter 6), where the Malthusian period is described as

a situation with “social mobility and the survival of the richest”. In pre-industrial

England, according to Clark, poor families on average did not replace their popu-

lation, while rich families did; consequently, there was continuous social mobility

downward. However, it is not unlikely that subsistence income plays some role

in truncating income distributions at the bottom, and it is useful to see how the

results presented would change if the income of everyone was above subsistence

minimum. In order to explore the effect on inequality on imposing subsistence

minima, the setup of Section 2 is altered in three ways, starting with log-normal

20The table is given in the Online Appendix.
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distributions built on a coefficient of variation of 1.

The first two adjustments keep the same log-normal distributions, but alter

them at the tails. For the first adjustment, denoted “Cut” in Table 8, any pop-

ulation below the subsistence minimum is simply shifted up to the subsistence

minimum. This reduces inequality at the lower end, but skews group means, as

the same group-wise log-normal distributions are kept for the rest of the popula-

tion. The second adjustment, labeled “Cut, preserve mean”, addresses this by also

shifting the richest part of the population in each group down to a “group upper

bound”, in such a way as to keep group means at the pre-adjustment levels.

The final adjustment (“Shift”) is of a different type. Instead of defining the log-

normal distribution on the entire positive income scale (starting at 0), it is defined

over the scale starting at ymin. This means that there is no population mass below

ymin. In practice, this amounts to subtracting ymin from all group means before

calculating the log-normal distributions, and then right-shifting these distributions

by ymin.

For each of these three adjustments, the aggregate Gini coefficients are re-

calculated. The calculation is done using numerical methods, calculating all pair-

wise differences in a discrete (but very fine-grained) population space.21 Subsis-

tence incomes are taken from Table 2 of Milanovic et al. (2011); however, in many

cases (denoted by an asterisk in the table) the mean income of the poorest group

is lower than this subsistence level. In those cases subsistence minimum is set to

the mean income of the poorest group.

An adjustment by minimum incomes does shift the Gini estimates down for

several populations, while others are virtually unchanged. Three populations stand

out with large corrections: Byzantium and the two Kenya observations. All of these

three have rather low population mean incomes, making the minimum income more

quantitatively important; the population mean in Kenya 1914 is only 50% above

minimum. Here, the same subsistence income is used for all populations; one could

argue that the subsistence level is lower in tropical areas. If subsistence income

in Kenya is actually lower, the downward revision of the Gini coefficient would be

less.

A strong downward change in the Gini is expected across the line, as assump-

21For a full description of this procedure, see the online Appendix.
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ymin/ȳ Benchmark Cut Cut, Shift Benchmark
G preserve GB

(c = 1) mean (c = 0)
Roman Empire, 14 0.48 61 55 45 47 36
Byzantium, 1000 0.56 64 55 42 44 41
England and Wales, 1290 0.47∗ 56 50 44 44 35
England and Wales, 1688 0.21∗ 61 59 58 57 45
Holland, 1732 0.07∗ 70 70 70 70 61
Moghul India, 1750 0.30∗ 59 56 54 53 39
England and Wales, 1759 0.17 61 60 60 59 46
Old Castille, 1752 0.07∗ 65 65 65 64 52
France, 1788 0.26 67 63 61 62 55
Nueva Espana, 1790 0.24∗ 74 71 68 69 63
England and Wales, 1801 0.11∗ 64 64 64 63 51
Netherlands, 1808 0.17 68 67 66 65 56
Kingdom of Naples, 1811 0.45 55 49 43 43 28
Chile, 1861 0.16∗ 74 73 72 71 64
Brazil, 1872 0.23∗ 58 56 55 54 40
Peru, 1876 0.33∗ 61 57 54 53 41
China, 1880 0.56 56 48 37 39 24
Java, 1880 0.31∗ 59 56 54 53 39
Maghreb, 1880 0.32∗ 71 66 62 63 57
Kenya, 1914 0.66∗ 59 48 34 34 33
Java, 1924 0.33 55 52 49 48 32
Kenya, 1927 0.53 64 55 44 48 42
Siam, 1929 0.18∗ 62 61 60 59 48
British India, 1947 0.23∗ 63 60 59 59 48

Table 8: The Gini coefficients under different assumptions on minimum incomes,
with c = 1
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tions of no population mass below minimum income correspond directly to assump-

tions of very low within-group inequality at the bottom of the income distribution.

The fact that substantial inequality (inequality above GB) remains even after such

an extreme revision shows that group overlap always needs to be accounted for

when using group data, even if one adheres strongly to limiting subsistence in-

comes.

4 Concluding discussion

This paper has shown that when accounting for within-group inequality in social

tables, reported inequality rises by a large amount. The increase comes from both

within- and across-group inequality, and is particularly important in the case where

groups are large and have means that are close to each other.

The log-normal distribution as used in this paper has the advantage of ad-

mitting a closed-form expression for the Gini coefficient and allows for overlap

between the group-specific income distributions. For distributions where we have

more knowledge about individual groups, other types of distributions might be

more appropriate. Beyond the discussion of top and bottom incomes above, this

is left for future work.

With further research, we can expect to see more tabulations of income and

wealth data from pre-industrial societies. For statistics of a social table format,

where within-group dispersion is not given, this paper presents a straightforward,

transparent way of calculating inequality. The method can also be useful for

modern data. While nation-wide distribution data now exist for most countries,

within-group data is frequently missing for subnational entities or social classes.

The approach presented in this paper can be used in these cases, to put struc-

ture on and properly evaluate any type of incomplete data on income or wealth

distributions.
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A Appendix: Calculations of expressions

A.1 Calculation of Equation (5)

This section shows the derivation of Equation (5), using the definition of the Gini

coefficient as the area below the Lorenz curve. The calculation is an extension

of Aitchison & Brown (1957)’s one-group case, and makes use of some convenient

properties of the log-normal distribution.

Denote the log-normal population density functions as f(x;µi, σ
2
i ) and the cor-

responding CDF as F (x;µi, σ
2
i ) =

∫ x
0
f(u, µi, σ

2
i )du. Throughout this section,

without loss of generality, group means will be rescaled to population means; that

is, the population mean is always 1.

First, as stated by Aitchison & Brown, Theorem 2.6, page 12

1

yi

∫ x

0

uf(u;µi, σ
2
i )du =

∫ x

0

f(u;µi + σ2
i , σ

2
i )du (9)

where yi is the group mean.

Secondly, from Aitchison & Brown, Corollary 2.2b, page 11

∫ ∞
0

F (ax;µ1, σ
2
1)dF (x;µ2, σ

2
2) = F (a;µ1 − µ2, σ

2
1 + σ2

2) (10)

Now consider a piecewise log-normal distribution, with the probability density

function

g(x) =
N∑
i=1

pif(x;µi, σ
2
i ) (11)

The Lorenz curve plots cumulative population against cumulative income. Let-

ting both axes run over income x, cumulative population is G(x) =
∫ x
0
g(u)du while

cumulative income is V (x) =
∫ x
0
ug(u)du.

By (9), cumulative income is
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V (x) =

∫ x

0

u

N∑
i=0

pif(u;µi, σ
2
i )du (12)

=
N∑
i=1

piyi

(
1

mi

∫ x

0

uf(u;µi, σ
2
i )du

)
(13)

=
N∑
i=1

piyi

(∫ x

0

f(u;µi + σ2
i , σ

2
i )du

)
(14)

=
N∑
i=1

piyiF (x;µi + σ2
i , σ

2
i ) (15)

Denote the total area below the Lorenz curve as H. It can be expressed as

H =

∫ ∞
0

V (x)d [G(x)] (16)

=

∫ ∞
0

N∑
i=1

[
piyi

(
F (x;µi + σ2

i , σ
2
i )
)]

d

[
N∑
j=1

(
pjF (x;µj, σ

2
j )
)]

(17)

=
N∑
i=1

(
piyi

∫ ∞
0

F (x;µi + σ2
i , σ

2
i )d

[
N∑
j=1

(
pjF (x;µj, σ

2
j )
)])

(18)

Reordering and using (10) to get

H =
N∑
i=1

(
piyi

N∑
j=1

pj

(∫ ∞
0

F (x;µi + σ2
i , σ

2
i )d
[
F (x;µj, σ

2
j )
]))

(19)

=
N∑
i=1

(
piyi

N∑
j=1

pj
(
F (1; (µi − µj) + σ2

i , σ
2
i + σ2

j )
))

(20)

=
N∑
i=1

(
yi

N∑
j=1

pipj
(
F (1; (µi − µj) + σ2

i , σ
2
i + σ2

j )
))

(21)

Letting FN denote a normal distribution and Φ its standardized variant, this

can further be written as
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H =
N∑
i=1

(
yi

N∑
j=1

pipj
(
FN(0; (µi − µj) + σ2

i , σ
2
i + σ2

j )
))

(22)

=
N∑
i=1

yi N∑
j=1

pipj

Φ

0− (µi − µj + σ2
i )√

σ2
i + σ2

j

 (23)

=
N∑
i=1

yi N∑
j=1

pipjΦ

−(µi − µj + σ2
i )√

σ2
i + σ2

j

 (24)

= 1−
N∑
i=1

yi N∑
j=1

pipjΦ

µi − µj + σ2
i√

σ2
i + σ2

j

 (25)

Finally, by the definition of the Gini coefficient,

G = 1− 2H (26)

= 2
N∑
i=1

yi N∑
j=1

pipjΦ

µi − µj + σ2
i√

σ2
i + σ2

j

− 1 (27)

A.2 Calculation of cw

This section outlines the calculation of cw. First, consider the more general case,

where the relationship between standard deviations and group means are

si
ȳ

= α

(
yi
ȳ

)β
(28)

αw is defined as the α that makes the average of within-group Gini coefficients

equal to the between-group Gini coefficient.

From Equations (2) and (28), we get
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σ =
√

log (1 + α2(yi/ȳ)2β−2) (29)

αw is then defined by the α that makes the average within-group Gini coefficient

(right-hand side below) equal to the between-group Gini coefficient (left-hand side

below; calculated from y and p).

GB =
N∑
i=1

pi2Φ

[√
1

2
log (1 + α2

w(yi/ȳ)2β−2)

]
− 1 (30)

This is solved numerically when β 6= 1.

Note that when β = 1, cw = αw. In this case:

GB = 2Φ

(√
1

2
log [1 + α2

w]

)
− 1 (31)

αw = cw =

√√√√exp

(
2

[
Φ−1

(
GB + 1

2

)]2)
− 1 (32)

For β = 1, all within-Ginis will be equal to the between-Gini. For β 6= 1,

the average of within-Ginis will be equal to the between-Gini. This means that

alternate averages (weighting by yip
2
i instead of pi, for example) would produce

different values for αw if β 6= 1, but do not matter for β = 1.

A.3 Calculating decile shares

When a fuller knowledge of the aggregate distribution is desirable, one can calcu-

late percentile shares. In the following, ten groups will be assumed (deciles), but

any partition is possible.

Let d be the vector of population lower bounds for the groups (d = {0, .1, .2, .3, ..., .9}).
Without loss of generality, rescale income so that the population mean is 1.

The lower income bounds a are then found numerically by solving
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N∑
i=1

(
piF (aj;µi, σ

2
i )
)
− dj = 0; (33)

for each j ∈ {1, 2, 3, ..., 10}. (Trivially, a1 = 0). As F is strictly increasing,

(33) only has one solution for each j.

The upper bounds b are then the lower bounds of the group above, bj = aj+1;

b10 =∞.

The mean income of each decile is

δj =
N∑
i=1

pi

∫ bj

aj

uf(u;µi, σ
2
i )du (34)

=
N∑
i=1

pi

(∫ bj

0

uf(u;µi, σ
2
i )du−

∫ aj

0

uf(u;µi, σ
2
i )du

)
(35)

From Equation (9) this equals

δj =
N∑
i=1

piyi

[∫ bj

0

f(u;µi + σ2
i , σ

2
i )du−

∫ aj

0

f(u;µi + σ2
i , σ

2
i )du

]
(36)

=
N∑
i=1

piyi
[
F (bj;µi + σ2

i , σ
2
i )− F (aj;µi + σ2

i , σ
2
i )
]

(37)

From this, for each decile group j, we know the bounds (aj, bj) and the mean

income δj.
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